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Preface

The volume contains the papers selected for presentation at the IX International
Workshop on Program Semantics, Specification and Verification: Theory and Applications
(PSSV-2018). The Workshop took place on June 21-22, 2018 in Yaroslavl, Russia. PSSV
Workshops were successfully held in Kazan (2010), St. Petersburg (2011, 2016), Nizhni Nov-
gorod (2012), Yekaterinburg (2013), Moscow(2014, 2017), Kazan (2015). In 2010–14 and 2016
PSSV Workshops were affiliated with the International Symposiums Computer Science in
Russia (CSR); in 2015 and 2017 it was affiliated with the International Conference Perspec-
tives of System Informatics (CSR).

The topics of the Workshop include formal models of programs and systems, methods
of formal semantics of programming languages, formal specification languages, methods of
deductive program verification, model checking method, static analysis of programs, formal
approaches to testing and validation, program testing, analysis and verification tools.

In 2018 the Workshop is dedicated to the memory of B.A. Trakhtenbrot (1921–2016),
M. I. Dekhtyar (1946–2018), and M.K. Valiev (1942–2018). Three memorial papers which
survey the substantial contribution in computer science made by these remarkable mathe-
maticians are included in these Proceedings. Thirteen research papers have been submitted
to PSSV 2018. Program Committee accepted 5 papers as regular ones, 2 as short presen-
tations, and 3 more papers — for the poster session. Abstracts of 3 invited talks are also
included in these Proceedings.

Nikolay Shilov, Vladimir Zakharov,
June 2018
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In memory of Boris Trakhtenbrot,
Mars Valiev and Michael Dekhtyar

Vladimir Sazonov

The University of Liverpool

1 Boris (Boaz) Trakhtenbrot (20.02.1921–19.09.2016)

The scientific history of Boris Abramovich Trakhtenbrot has already been well described
in [1,2,4]. So, I would like to focus on some aspects that seem important from the humanistic
point of view, touching on other things only very slightly.
Moldova, WW2, Chernovtsy. Boris Abramovich Trakhtenbrot was born in Brichevo
village in Northern Bessarabia (now Moldova). In 1940 he started studying mathematics
in the Moldavian Pedagogical Institute in Kishinev, then evacuation. . . , returning back. . . ,
then enrolling in the University of Chernovtsy (Ukraine) in 1945 and getting a master’s
degree in 1947.

This was also a happy time because he married Berta Isaakovna Rabinovich (1921–2013).
Later, many of us enjoyed the warm hospitality of this family, particularly of truly remarkable
woman Berta Isaakovna, with two sons Mark and Josef and, now, many grandchildren.
Kiev-Moscow 1947–50, PhD degree under direction of prominent Soviet mathematician
and logician P. S. Novikov from Moscow. This was a brilliant scientific start with the famous
Trakhtenbrot’s finite version of Church’s Theorem about non-recursive enumerability of first
order logic truths on finite models.

Meanwhile, this was also a difficult time for survival of mathematical logic in the USSR
due to an absurd semi-official ideological accusations against such greatest logicians and
philosophers of the world, actually founders of the subject, as B. Russel (“warmonger”) and
A. Tarski (“militant bourgeois”). Trakhtenbrot was only a passive witness of such attacks at
that time, but soon. . .
Penza 1950–1960, the Pedagogical Institute. Once, after giving a seminar talk “The
method of symbolic calculi in mathematics”, Trakhtenbrot was blamed of being “an idealist
of Carnap-species”—quite a dangerous accusation in 50-th. Fortunately, Moscow’s colleagues
P. S. Novikov, A. A. Lyapunov, A. N. Kolmogorov and others were able to defend him. By
the way, Trakhtenbrot always priced highly and recalled warmly the deep relationship with
Lyapunov, his influence on him and support, particularly in his earlier period of research.
In the more quiet 1970s he told me this story even humorously. The very idea of algorithmi-
cally undecidable problems was an “ideological crime”, because “there could not be anything
insoluble for the great Soviet people!” Then, to protect himself in the future, he published an
educational article “Algorithms and automatic problem solving” in a “Mathematics in School”
journal in 1956. Later it was reworked (1957, 1960, 1974) as a widely popular introductory
textbook in the USSR and even abroad “Algorithms and Computational Automata”.
Siberian Period 1960–1980 became the last one for Trakhtenbrot in the USSR.
He was engaged in research at the Institute of Mathematics of the USSR Academy of
Sciences’ Siberian Branch (IM SB AS USSR) in the Department of Theoretical Cyber-
netics (through the initiative and guidance of A. A. Lyapunov (1911–1973)) and also
lecturing at the Novosibirsk State University in Akademgorodok. In 1967 he and A.
Gladky jointly established the Department Automata Theory and Mathematical Linguistics.



Collectively, in Academgorodok, staff, undergraduate and PhD students related with
the Department were in various periods: V. Agafonov, J. Barzdins, N. Belyakin, V. Bo-
yarkin, M. Dekhtyar, A. Dikovsky R. Freivalds, A. Korshunov, J. Hodjaev, M. Kratko,
Z. Litvintseva, I. Lomazova, Matveeva, L. Modina, V. Nepomniaschy, L. Orekhovskaya,
V. Sazonov, M. Sokolovskiy, A. Vaiser, M. Valiev. The departmental sem-
inar “Algorithms and Automata” was visited by many guests: S. Artemov,
M. Kanovich, E. Kinber, V. Kotov, L. Levin, L. Lisovik, A. Nepomniaschy,
G. Plesnevich, R. Plius̆kevic̆ius, A. Slisenko, M. Taitslin, M. Trakhtenbrot,
G. Tseitlin—just to mention some of them.

At this highly fruitful period Trakhtenbrot was working on automata the-
ory (publishing two books in co-authorship of one with N. Kobrinsky (1910–
1985) and another with J. Barzdins), complexity theory, semantical and logical
problems of high level programming languages, etc. See much more in [2,3]. As the re-
sult of his teaching and research on complexity theory, he published Lecture Notes “The
Complexity of Algorithms and Computations” (1967).

Unfortunately, this period finished in 1980 as Trakhtenbrot emigrated to Is-
rael. Actually, rather dramatical events preceded this decision. Although this
story did not touch me personally, I felt myself this as a kind of highly unpleas-
ant quasi-scientific politics from which Trakhtenbrot and some colleagues, e.g.
Michael Dekhtyar, were suffering. Also, Trakhtenbrot was deprived of the
management of his Department in 1977. In the new edition of the Soviet Mathe-
matical Encyclopedia Trakhtenbrot’s participation was stopped. It is awful when
the situation, starting seemingly from quite harmless, even reasonable scientific
discussions on formalizations of new intuitions (around the problem of ‘perebor’
—the problem of eliminating ‘brute force search’) developed to confrontation on var-
ious levels [6,7].

After Trakhtenbrot’s emigration to Israel in 1980 some of our colleagues Dektyar, Valiev
and, later, Agafonov, Lomazova and me eventually moved to the European part of USSR.
Others, already working in different places, stayed in Novosibirsk. M. Trakhtenbrot emi-
grated to Israel at some later time than his father. The entire life for those who moved
has changed. Dikovsky and Modina had already relocated to Kalinin (nowadays, Tver) in
1978. At the same time we were always connected to each other and some of us cooperated
scientifically in various ways, e.g. participating in joint projects.
Israel, 1981, Professor of Computer Science at Tel Aviv University. Trakhtenbrot’s
emigration at that political time could really mean that we never meet again. This was at
least a very strange and really painful game of fate. However, the history of the Soviet Union
had been changing so dramatically and rapidly that Trakhtenbrot came back to the USSR
for a conference in 1989. This was like a miracle! We could not even dream of it! Since then,
he visited Russia again and invited many of his colleagues to attend conferences in Israel. . .

It is unrealistic to present all scientific achievements of Boris Trakhtenbrot here and
his invaluable role in Computer Science both in the Soviet Union and in the World. For
example, see the description of his world-wide role as a ‘Pillar of Computer Science’ e.g.
in [1,4]. The Friedrich Schiller University in Jena bestowed a degree of doctor honoris causa
on Trakhtenbrot in October 1997. He was also honoured with the prestigious EATCS an-
nual Distinguished Achievements Award of 2011 [5] “to acknowledge extensive and widely
recognized contributions to theoretical computer science over a life long scientific career”.

Boris Abramovich had a happy life in spite of all problems and created his own school—
the Trakhtenbrot’s School with a great scientific and moral atmosphere. He passed away at
the age of 95 surrounded by his loving family.
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2 Mars Kotdusovich Valiev (01.01.1942–31.01.2018)

Mars was born in Adaevo village, Tatarstan, Russia—the place where the family survived
during the WW2 in hardship and poverty while his father was fighting in the frontline. He
eagerly started study at school at 6 (very unusual in that time), and graduated in the village
Poisevo with a silver medal. Quite young, at 16, he became a student of mathematics at
Kazan State University.

On the last, fifth year of study, he (with a few best students) was seconded to prac-
tice at the Novosibirsk State University. Mars happily used this chance to become a PhD
student under direction of Trakhtenbrot, and then he got a junior research position in the
Institute of Mathematics SB AS USSR. His PhD Thesis was: “On Complexity of Word Prob-
lem for Finitely Presented Groups” (1969). This subject mostly prevailed in his works till
1978. Then his interests were extended widely and radically and can be described briefly
as application of mathematical logic to programming and database theory, computational
complexity, multi-agent systems and distributed computing. From 90-th he did his research
in a close and fruitful cooperation with Dekhtyar and Dikovsky.

After emigration of Trakhtenbrot, Mars moved to Moscow where he worked
in various places: 1982—Moscow Institute of Electronic Engineering, 1984—
Institute of System Analysis of RAS (formerly ВНИИСИ). Scientifically most
important were 1994—M.V. Keldysh’s Institute of Applied Mathematics of
RAS (Senior Researcher at Department of Information Modeling and Control
Systems) and 2005—Russian State University for the Humanities (known as
РГГУ or RGGU; Associate Professor, reading the courses of lectures on
“Programming”, “Mathematical Linguistics” and “Mathematical Logic”).

Mars was highly talented and fruitful scientist. He is the author of at least 68 publications.
See also his ‘Research Gate’ [10]. Very responsive and friendly he was always ready to help
his young colleagues. How many times did Mars give me useful tips for improving the style of
my first articles! He actually became a heart and soul of the team and the person who always
remembered about everybody living here-and-there. Usually it was Mars who informed us
about everything important what happened to anyone in the team. I remember he was
worried not getting contact with Miroslav Kratko in the Summer of 2017. Mars died of a
heart attack at the age of 76—so painful loss.

3 Michael Iosifovich Dekhtyar (18.11.1946–17.03.2018)
Michael was born in Zhitomir (Ukraine) were he finished high school with

the golden medal. During his school years he was also the winner of the
Ukrainian Republican Mathematical Olympiad. Quite independently, both he and his
future wife Rika simultaneously enrolled to the Novosibirsk State University in
1964. Besides studying, they worked in the line of the Komsomol on organizing
mathematical “circles” (math clubs) in schools of Academgorodok. This way. . .
they fell in love and married in 1969 in the last year of their studies. They were a very
happy family with son Alexander (and now with two grandsons).

As an undegraduate student, Michael quite early became a permanent and successful
participant of the Trakhtenbrot’s seminar. During this period he made his first research
work on ‘perebor’. That was the time when the very concept had only a very intuitive
level, and required some first mathematical approaches. Trakhtenbrot wrote in [2], page 24:
“. . . the inevitability of perebor could be explained in terms of computational complexity of
the reduction process. The conjecture was proved by M. I. Dekhtyar in his Master’s Thesis
(1969). . . one can say that his construction implicitly provided the proof of the relativised
version of the P 6= NP conjecture” thereby anticipating one of the results by Backer, Gill
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and Soloway (1975). This work eventually resulted in his PhD Thesis: “On the Complexity
of Relativised Computations”, Moscow State University (1977).

However, before enrolling to postgraduate study, Michael had to serve two years 1969–
1971 in the Soviet Army as a lieutenant in the city of Semipalatinsk.

After Trakhtenbrot’s emigration the Dekhtyars moved in Tver where Michael
was eager to reunite and work with Dikovsky. But it turned out to be impos-
sible right away, and Michael began to work on software projects (against his
mathematical interests) in: (1982–1987)—Tver Special Design Office of Con-
trol Systems (Chief Designer), then (1987–1991) Tver NPO the Centre of Pro-
gram Systems (Leading Researcher). At last, the official activity of Michael be-
came coinciding with his research interests: (1991–2015) The Department of
Informatics of Tver State University (Associate Professor and then Professor since
2010). Michael received Doctor of Science Degree in mathematics in 2009 with the disser-
tation “Semantics and the complexity analysis of algorithmic problems of dynamic systems
and languages using logic programming”.

Overall, Michael was one of the outstanding computer scientists in Rus-
sia with wide range of research interests: Complexity of Computations and
Algorithms, Kolmogorov’s Complexity, Data Bases (active, deductive,
probabilistic and temporal), Artificial Intelligence, Logic Programming,
Intellectual Program Agents and Multiagent Systems, Bioinformatics,
Computational Linguistics. He has 109 publications including 7 tutorial books. His
two successful PhD students are S. Dudakov (2000) and B. Karlov (2012). See more
in [8,9]. Being an exceptional mathematician Michael could explain complicated concepts
very clearly even to non-specialists. He was a charismatic person who radiated kindness,
generosity and calm confidence.

In 2017 Michael and Rika moved to USA to join the family of their son Alexander Dekht-
yar, Professor at the Dept. of Computer Science at California Polytechnic State University.
So, he has followed his father’s scientific footsteps.

Michael died after a long illness at the age of 71.

Recalling meetings with Mars and Michael in Tver. Regular meetings of old friends
and colleagues where usually held in the hospitable house of Michael and Rika Dekhtyar in
Tver. These were long and interesting discussions on various topics connected not only to
research news. Once in 2013 Mars, Michael and I were watching a dramatic TV discussion
featuring a reform of Russian Academy of Sciences. An extreme anxiety and emotions over-
powered us. Then Alexandr Dikovsky from Nantes in France (who was already critically ill)
joined us by the Skype and our hot and intense conversation continued. . . The last meetings
were especially touching and emotional.

Boris Trakhtenbrot, Mars Valiev and Michael Dekhtyar are greatly missed. No doubts,
all of us who knew them, are devastated and heartbroken by the loss of our friends and
colleagues. Now, we have no opportunity to find ourselves in their circle again, “to warm
up by the fire of their hearts”, to restore those wonderful feelings when we began our
scientific life and friendship together in that amazing atmosphere of our spiritual unity.
They will remain in our hearts and memories forever, together with other colleagues and
friends who also left us: V. A. Agafonov (1940–1997), B. I. Trakhtenbrot (1921–2013),
M. A. Taitslin (1936–2013), A. Ja. Dikovsky (1945–2014), N. V. Belyakin (1936–2016),
R. V. Freivalds, (1942–2016) L. S. Modina (1945–2017), and just in the most recent months—
M. I. Kratko (1936–2018) and A. V. Gladky (1928–2018).

Acknowledgments. I am very grateful to Mark Trakhtenbrot, Venera Erikova and Rika
Dekhtyar for providing their memories and commenting on the text.
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Mikhail Iosifovich Dekhtyar
(1946–2018)

Sergey M.Dudakov and Boris N.Karlov

CS Faculty, Tver State University, 33, Zhelyabova str., Tver, 170100, Russia
(sergeydudakov@yandex.ru, bnkarlov@gmail.com)

Abstract. The text is a tribute to Mikhail Iosifovich Dekhtyar.

On march 17, 2018, we have lost Mikhail Iosifovich Dekhtyar, one of the great computer
scientists in Russia. We would like to remember his main achievements. Certainly our short
paper can’t describe the full contribution of Mikhail Iosifovich into Computer Sciences, but
it gives an idea of his investigations and main results. The list of his publication is also
non-complete and contains only few works.

Mikhail Iosifovich Dekhtyar was born in Zhitomir, Ukraine, in 1946. There he graduated
from secondary school, then he entered the Department of Mathematics of Novosibirsk State
University and finished it in 1969 with distinction. Later he entered postgraduate studies in
the Institute of Mathematics, Russian (Soviet Union) Academy of Sciences (RAS), Siberian
Branch. He was a student of B.A.Trakhtenbrot. In 1977 he got the PhD degree (the can-
didate of sciences in physics and mathematics) on the Department of Mechanics and Math-
ematics, Moscow State University. Since 1974 until 1981 he worked as junior researcher in
the Institute of Mathematics. At the end of 1981 M. I.Dekhtyar moved to Tver (Kalinin)
where he continued theoretical studies. Simultaneously he gained an experience of a real
software development as a chief software designer in SPKB SU and a lead researcher in Cen-
terprogramsystem (both are software development companies). Since 1987 he worked at the
Computer Sciences (algorithmic languages and system programming) Faculty, Department
of Applied Mathematics and Cybernetic, Tver State University. At first he was a senior
lecturer, since 1992 this was his main job and he became an associate professor. In 2009 he
got the Doctor of Science Degree in physics and mathematics and became a full professor.
Thus he worked until 2015 when he ought to leave the job due to health issues.

M. I.Dekhtyar was a well-known specialist in computational and Kolmogorov complexity,
modern databases theory, artificial intelligence, functional and logical programming, multi-
agent systems, computational linguistics and in other branches of Computer Sciences. He
published more than 80 scientific works. M. I. Dekhtyar was a member of American Math-
ematical Society and International Association of Logical Programming, long-term referent
of Abstract Journal (VINITI, RAS) and Mathematical Review. Many times he participated
in Russian and international conferences and seminars. A number of times he was involved
in international investigations in universities of France (Paris, Nantes) and USA (Maryland,
Kentucky).

In the early works M. I. Dekhtyar investigated some problems of computational and Kol-
mogorov complexity. He studied some problems of relativized computations, the structure
of degrees of bounded reductions, relationships between relativized versions of complexity
classes P, NP, PSPACE, density of hard sets etc. One of these tasks is to calculate function
with respect to its graph. M. I.Dekhtyar proved that solution of this problem necessarily re-
quires some kind of “brute force”. He defined the notion of hard sets approximation (see [1]).
It means there are sets of “low” polynomial bounded Kolmogorov complexity and their initial



segments are equal to the ones of the hard set. Exponential lower bounds of such approxi-
mation are obtained for hard sets in some complexity classes. As a corollary it was proved
that formulas of some well-known theories can’t be easily approximated in this manner.

A group of linear logic problems was investigated by M. I.Dekhtyar with M.A.Taitslin,
D.A.Archangelsky and some other researchers (see [3]). One of these tasks is to find an
inference of a sequent in the Horn fragment of Girard’s linear logic. NP-completeness was
proved for this task. To simplify the problem they proposed several different concepts of
sequent concurrency. This idea connects sequents of linear logic and nets with bounded
resources. It was proved that different concurrency properties lead to different complexities
of inference problem. But the other obtained result is a high complexity of concurrency
recognition in any case.

Many works of M. I.Dekhtyar are devoted to functional and logical programming. For
example, he investigated a semantic of text processing functional language REFAL. He
proposed a correct denotational semantic for this language and established NP-completeness
of its interpretation (see [2]).

Another practically important problem is intelligent updates of dynamic deductive
databases (DDDB). Such database must automatically restore its state to satisfy an in-
tegrity constraint (given by a logical program) when this constraint is broken by user actions.
Together with A.Ya.Dikovsky and N. Spiratos an axiomatic definition of DDDB updates se-
mantics was developed. For these semantics operators of forced updates were introduced and
algorithms were developed for computing such operators (see [5]). The analysis of decidability
and computational complexity for these operators was made together with S.M.Dudakov.

Also the behavior of DDDB was analyzed in the case of interacting with an unpredictable
external environment. Two following notions were proposed and investigated (see [4]). One is
a stability, when this environment tries to restore a correct database state after user ruinous
actions. The other is homeostaticity, when the environment behavior is destructive and a
correctness is restored by user. The complexity of both problems is established for different
kinds of integrity constraints.

M. I. Dekhtyar studied a problem of probabilistic satisfiability for logical programs. For
example, databases with interval probabilities are investigated with A.M.Dekhtyar. Non-
soundness was established for the fixed-point semantic proposed by V. S. Subrahmanian and
R.Ng. The correct semantic of possible worlds was introduced instead (see [6]).

The group of M.K.Valiev, A.Ya.Dikovsky and M. I.Dekhtyar made series of researches
of intelligent program multiagent systems (MAS). The problem is to verify a behavior of
MAS (see [7]). First-order temporal logic and temporal calculus were used to describe the
MAS behavior. Verification complexity was established for different classes of MAS. For
probabilistic and fuzzy MAS obtained results allow to use known methods of finite Markov
chains verification.

One of the last series of researches was performed with A.Ya.Dikovsky and B.N.Karlov
(see [10]). An object of these investigations is categorial dependency grammars (CDG).
This concept is a generalization of classical formal grammars, but it permits to parse more
complex constructions of natural languages. For example, CDG can describe non-projective
dependencies when connected items are separated. Parsing complexity of CDG was estab-
lished, in particular it was proved that the membership problem for CDG is NP-complete
in general case, but CDG can be parsed in polynomial time under some natural restrictions.
In subsequent studies further generalization of CDG was found, it is multimodal categorial
dependency grammars (mmCDG). Some results on closure properties were found. It was
proved that the class of mmCDG-languages is an abstract family of languages (AFL), and
the class of CDG-languages is closed under all AFL-operations except maybe the iteration.
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For CDG and mmCDG corresponding equivalent classes of formal automata were proposed.
These are the push-down automata with independent counters or with stacks of independent
counters.

M. I. Dekhtyar had some singular works. One of them is dedicated to bioinformatics. He
designed, developed and tested an algorithm for searching of strong promoters in bacterial
genomes (see [8]). The other is devoted to markup languages (see [9]) and was written with
M.K.Valiev.

M. I.Dekhtyar was very talented lecturer. He designed and taught a lot of courses: discrete
mathematics, development of efficient algorithms, mathematical foundations of computer
sciences, Kolmogorov complexity and randomness, methods of artificial intelligence, markup
languages and many other. A number of workbooks were written. For example, the book
“VBA and Office 97. Office programming” was written together with V.A.Billig. In 1998
this book won a diploma in the contest “Business book of Russia” in nomination “Computer
Sciences”. In 2007 he made a workbook “Lectures on discrete mathematics” published by
“BINOM”, and in 2011 he made a workbook “Graph algorithmic tasks”.

M. I. Dekhtyar was science supervisor for S.M.Dudakov and B.N.Karlov when they were
PhD studying, and for many graduate and undergraduate students.

We condole with Rosalia Vitalievna and Alexander Mikhailovich Dekhtyar over the loss
of Mikhail Iosifovich.
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Abstract. This paper presents a brief overview of my joint work with Michael I.
Dekhtyar on the topic of the semantics of Interval Probabilistic Programs.

1 Introduction

Interval probabilistic programs are logic programs in which clauses have a form

H1 : [a1, b1] ∨ . . . Hm : [am, bm]←− F1 : [l1, u1] ∧ . . . ∧ Fn : [ln, un],

where Hi and Fj are either atomic formulas or simple conjunctions, and [ai, bi] and [lj , uj ],
called annotations, are subintervals of [0, 1]. Intuitively, the clause above is understood as a
statement that if the probabilities of events described by formulas F1, . . . , Fn fall, respectively
within the ranges [l1, u1], . . . , [ln, un], then the probability of at least one of events described by
formulas H1, . . . ,Hm falls within the respective range [a1, b1], or [a2, b2, or . . . , or [am, bm].
Various subclasses of interval probabilistic programs were proposed by Ng and Subrahmanian
in [10,11] and Dekhtyar and Subrahmanian in [4,5].

The Generalized Annotated Programs (GAPs) of Subrahmanian and Kifer have pio-
neered the use of annotations to represent truth values in logical programs [9]. The GAP
framework uses annotations from a lattice of truth values and shows how to construct both
model-theoretic and matching fixpoint semantics for annotated logic programs. Early interval
probabilistic program frameworks [10,5] represented the extensions of the GAP framework,
with probability interval annotations forming a lattice over the subset inclusion operation.

Years later, Dekhtyar and Dekhtyar noticed that there is a more precise way to interpret
interval probabilistic programs. Starting with a simplified case [3] and eventually expanding
their work to encompass more expressive frameworks [2,1] they described the precise seman-
tics of interval probabilistic programs in new terms, and developed efficient procedures for
computing the new semantics.

In this paper, we provide a brief description of Michael Dekhtyar’s contributions to
the theory of interval probabilistic logic programs, concentrating on his work on defining
their precise semantics and developing efficient algorithms for constructing it. In Section 2
I provide a brief overview of the history of my collaboration with Michael Dekhtyar in the
area of probabilistic logic programming. Section 3 contains a brief outline of the technical
contributions.

2 Historic Notes

In October 1998, at the invitation of my Ph.D. advisor V.S. Subrahmanian, Michael I.
Dekhtyar visited University of Maryland, where I was a Ph.D. student at the time1. During
1 The immediate reason for this visit was the birth of Michael’s first grandson, Victor.



this visit, we introduced him to Hybrid Probabilistic Logic Programs (hp-programs) [4], an
emerging topic of my Ph.D. dissertation. Over the course of Michael Dekhtyar’s one-month
stay in Maryland, we jointly extended the semantics of hp-programs to the case where
the uncertainty was temporal [6], and have answered a number of important complexity
questions related to hp-programs [7].

This would have been the extent of our joint work if it wasn’t for a series of conversations
Michael Dekhtyar and I had during his visit to the US in 2003, when it occurred to us that the
semantics of hp-programs, and in general, of any probabilistic interval programs as described
in our prior work [4,7], as well as in the work of Ng and Subrahmanian [10,11] was not precise.
We developed the precise semantics for a simple fragment of interval probabilistic programs
first [3], and during Michael’s subsequent visit to the US in 2004-20052 we extended the
semantics to a significantly broader class of programs[2]. In 2007, we worked remotely on
summarizing our results on this topic, broadening them, and publishing them as a single
extended paper [1].

3 Semantics of Interval Probabilistic Programs

The GAP-style semantics of interval probabilistic programs [10,4,5] is briefly described as
follows. Each atom a from the Herbarnd base of a program P is associated with a probability
interval h(a) = [a, b] ⊆ [0, 1]. We say that h |= a : [l, u] iff h(a) ⊆ [l, u]. A conjunction
a ∧ b : [l, u] and a disjunction a ∨ b : [l′, u′] is satisfied by h if h(a) and h(b) interpreted as
interval probabilities of a and b make it possible for the probability of a ∧ b and a ∨ b to
be respectively in the intervals [l, u] and [l′, u′]. ←− is interpreted as a strict implication.
The fixpoint semantics starts by assigning each atom in a program P the probability value
[0, 1] (⊥ in the lattice of subintervals of [0,1] based on set inclusion), and narrows down the
interval by "firing" the facts a : [l, u] and clauses a : [l, u]←− Body when possible. The key
mechanism for narrowing the probability range of a formula is this: if clauses with the heads
H : [l, u] and H : [l′, u′] are "fired", then we infer H : [max(l, l′),min(u, u)] = [l, u] ∩ [l′, u′].
For the frameworks of [10,5] it is shown that given a probabilistic program P , the fixpoint
procedure converges to its minimal interval interpretation.

It turns out, however, that this is largely due to the weakness of both the definition of a
minimal interval interpretation, and the fixpoint procedure itself. A well-known approach to
reasoning with probabilities is the possible world semantics, in which a probability distribu-
tion over a set of possible worlds (sets of atoms that are true) is given, and a probability of
a specific atom is computed as the sum of probabilities of possible worlds the atom is true
in. Dekhtyar and Dekhtyar noted in [3] that if point probability models associating a sin-
gle probability value with each atom/formula in an interval probabilistic program are used
as interpretations of even the simplest programs, the set of valid models can no longer be
faithfully represented by assigning each atom a single probability interval. A simple program
illustrating this is shown below:

a : [0.2, 0.4]←− . b : [0.3, 0.5]←− .
b : [0.6, 0.7]←− a : [0.2, 0.3] b : [0.6, 0.7]←− a : [0.3, 0.4]

The fixpoint procedure of [10] fires both facts a : [0.2, 0.4] and b : [0.3, 0.5] but is unable
to fire either of the rules, because [0.2, 0.4] is not a subset of either [0.2, 0.3] or [0.3, 0.4], thus
leaving the probability interval for b as [0.3, 0.5]. Yet, it is pretty clear that if probability of
a is in the interval [0.2, 0.4], it must be either in the interval [0.2, 0.3], in which case the first
rule must fire, or in the interval [0.3, 0.4], in which case the second rule must fire. In either

2 On the occasion of the birth of his second grandson, Gregory.
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case, b : [0.6, 0.7] becomes confirmed, contradicting the already established b : [0.3, 0.5], i.e.,
the program above cannot have a satisfying possible world model.

In [3], we provide a precise description of the set Mod(P ) of the possible worlds models
of an interval probabilistic program P . We describe each program in terms of a collection of
sets of inequalities – each set corresponding to one possible template of assignment of point
probabilities to the atoms in P that satisfies all rules (all atoms are satisfied, and for each
rule, either both the head and the tail are satisfied, or the tail is not satisfied). We show
that the set of all possible solutions of such a system of inequalities (INEQ(P )), associates
with each atom a a union of open and closed subintervals of [0, 1].

In [1] we show the following results related to the computation of the set Mod(P ) of
possible worlds models of interval probabilistic programs:

– Given the Herbrand base L = {a1, . . . , an} of a program P , the number of disjoint
subsets of [0, 1]n in Mod(P ) has an upper bound exponential in n.

– For some families of interval probabilistic programs, this exponential bound is reached.
– A Gelfond-Lifschitz-style [8] procedure can be used to construct Mod(P ) in a way that

enumerates all disjoint subsets ofMod(P ) and guarantees that each of them is considered
exactly once.

– For a non-trivial class of simple interval probabilistic programs there exists a straight-
forward necessary and sufficient condition for Mod(P ) to coincide with the result of the
fixpoint procedure.

The results of [3,2,1] are somewhat pessimistic: they suggest that a relatively simple and
intuitive framework for reasoning with interval probabilities has very complex, both from
the descriptive, and computational points of view semantics. At the same time, this work
crosses the "t"s and dots the "i"s in close to 20 years of active research in the area of interval
probabilistic logic programs.
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Gentzen introduced (1934) two different formalisms for proofs in intuitionistic logic: nat-
ural deduction (NJ) and sequent calculus (LJ). The Curry-Howard-de Bruijn isomorphism
between NJ and simply-typed lambda-terms (1940) arose in the 60’s, while there was no
such an isomorphism for LJ, essentially because equality between LJ proofs is “evil”. In
1971, Girard extended this isomorphism to the second-order considering an expressive poly-
morphic programming language (System F). Fifteen years later, inspired by Berry’s notion
of stability (1978), which refines Scott’s notion of continuity (1972), he introduced coherence
spaces as a model of System F; that is how linear logic was born. Linear logic is a refine-
ment of intuitionistic and classical logic that distinguishes among all the proofs those using
exactly once their assumptions. Taylor expansion of proofs, which expresses proofs as series
of their linear approximants, was considered by Girard from a semantic viewpoint. Since the
2000s Ehrhard has been investigating topological vectorial spaces as models of linear logic.
This investigation led him with Regnier to introduce differential nets (2006), which allow to
express syntactically Taylor expansion.

I will address the two following related problems: 1) Friedman proved (1975) that
the standard model for the lambda-calculus with sets and functions is complete for beta-
reduction; can we obtain a similar result for cut-elimination in linear logic? It was conjectured
twenty years ago that it is the case with the model of sets and relations. This conjecture has
finally been proved. This result shows in particular that we have a good notion of equality of
proofs in linear logic. 2) If two proofs have the same Taylor expansion, are they equal? Fur-
thermore, inspired by the closed relation between Taylor expansion and Krivine’s machine,
I will introduce a typing system allowing a static analysis of time complexity.



Russell logical framework:
proof language, usability and tools

(abstract of invited talk)
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When one develops a proof language, the following features are of the highest degree of
importance: usability, reliability and flexibility. Language Russell was designed with these
features put in the forefront. Different aspects of these features are discussed, and Russell
system is compared with other popular formal math systems like Isabelle, HOL, Mizar,
Metamath etc.



Software testing:
Finite State Machine based test derivation strategies

(abstract of invited talk)
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There is a big body of works in software testing (see, for example, Springer publications
of the IFIP International Conference on Testing Software and Systems, ICTSS, 1991 – 2017)
devoted to test derivation based on Finite State Machines (FSMs). The reason is that FSMs
on one hand, include a “natural reactivity” and thus, can be eventually used for testing
systems which work in the “request-response” mode. On the other hand, for FSMs, the test
derivation is a long standing problem and a number of methods have been developed for de-
riving test suites with guaranteed fault coverage, i.e., test suites which guarantee to detect at
least critical faults. The main deterministic FSM based methods deal with the case when the
state number of an implementation FSM is limited and somehow most of these methods are
based on the so-called W-method or the Henni method when deriving a checking sequence.
However, nowadays FSM based test derivation is extended with novel powerful methods
for different FSM types and in fact, an H-method or a SPY-method can be hardly seen as
modifications of W-method; moreover, another interesting body of works appeared for test-
ing nondeterministic FSMs. For nondeterministic, possibly partial FSMs, novel interesting
techniques for deriving adaptive tests with guaranteed fault coverage have been elaborated.
FSM based test suites were effectively used for testing protocol software implementations
and a number of inconsistencies were found in those implementations. Extensions to the W-
based methods are also considered in the context of hybrid systems including systems with
timed constraints. In order to have a test suite with guaranteed fault coverage usually the
behavior of such a system is described by an appropriate FSM. We also note that lately FSM
extensions are used for checking not only functional but also non-functional requirements
for a system under test.
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Abstract. KeYmeara is an interactive theorem prover for verifying safety proper-
ties of cyber-physical systems (CPSs). It implements a Dynamic Logic for Hybrid
Programs (HPs), while a HP models a CPS very precisely. Verifying properties of
a given system in KeYmeara can become a challenge for the user since the proof is
authored in a classical sequent calculus framework and a successful proof requires
from the user intimate knowledge on the available calculus rules. Another barrier for
widespread application of KeYmeara is the purely textual representation of current
proof goals, what requires from the user very good training, experience, and patience.
In this paper, we present an alternative verification approach based on KeYmeara,
which drastically improves usability and minimizes user interaction. The main idea is
to let the user annotate contracts to states of the hybrid automaton. Thus, the user
can employ the graphical representation of the modelled system and is not bound
to the purely textual form of hybrid programs as in KeYmeara. Based on the user-
provided contracts, one can generate proof obligations, which are much simpler than
the original proof goal in KeYmeara.

1 Motivation

A cyber-physical system (CPS) is a system that tightly combines software with physical
components. The state of a CPS consists of the discrete state of its software and the anal-
ogous state of its physical parts. Safety analysis of CPSs must take into account physical
laws, which apply to physical parts as well as the code structure of the software part [6].

The notion of hybrid automaton (HA) [3,7] has proven to be useful for the precise de-
scription of the behaviour of CPSs. Logic-based analysis of a given hybrid automaton has
been thoroughly investigated by Platzer in [10] and became practically feasible by the tool
KeYmeara [12]. This tool is an interactive prover and allows the user to formally prove
safety properties taken both discrete and continuous state variables into account. KeYmeara
implements a Dynamic Logic for hybrid programs (HPs), which can be seen as a textual
representation of hybrid automata. While the notation of HP is compact and concise, it
can become painful to be bound on the purely textual notation when proving even rather
obvious properties of a CPS.

In this paper, we propose an approach to overcome some of the obstacles the user faces
when authoring a proof using KeYmeara. Based on a very simple example, we show how a
graphical representation of a HP can be obtained. Our graphical representation is inspired by
classical hybrid automata and shows the states of the system together with applied physical
laws. Based on our graphical representation, the user can rather easily provide additional
facts, which are necessary to formally verify the whole system. These additional facts are
annotated in our approach as contracts to the system states. Based on the provided contracts,
one can generate proof obligations, which are much simpler than the original proof goal in
KeYmeara.



2 Verification of Cyber-Physical Systems using KeYmeara

In KeYmeara, a CPS is modelled in form of a Hybrid Program (HP), for which proper-
ties expressed in Dynamic Logic can be proven. A HP is built on variables (always of type
float), derivations of (continuous) variables, arithmetic expressions, first-order formulas for
conditions on the current state, and a simple execution language with operators for as-
signment (:=), sequential execution (;), non-deterministic choice (∪), and non-deterministic
repetition (∗). For a detailed introduction to HP and the logic of KeYmeara, the reader is
referred to [11].

2.1 Running Example: Simple Velocity Controller

As an illustrative example, we introduce a simple velocity controller. The velocity v of
the controlled system (e.g. a car or a train) is set by the controller either to a fixed velocity v0

or to 0 (zero). The controller readjusts the choice periodically based on the current position
z. If z is far enough from an obstacle m, the system will keep velocity v = v0, otherwise the
system is stopped. The safety property we want to prove is, that the controller never stops
the system too late, i.e. under all circumstances we will have z < m.

Our example is actually a simplified version of the tutorial example given in [11] and
formulated as a Hybrid Program as follows

α =

q := start;
( (?q = start;SB := m− εv0; t := 0; q := diamond)

∪ (?q = diamond ∧ z < SB; v := v0; q := driving)
∪ (?q = diamond ∧ z ≥ SB; v := 0; q := stopped)
∪ (?q = driving; z′ = v, t′ = 1&t ≤ ε)
∪ (?q = driving; q := start)
∪ (?q = stopped; )

)∗

The Hybrid Program starts in a state start (q := start) and then chooses non-
deterministically often from the following program branches: if the current state is start,
then SB is assigned to m − εv0, t is assigned to 0 and the current state is switched to
diamond; if the current state is diamond, the current state switches to driving or stopped
depending on the value of z; if the current state is driving, the continuous variables z and
t changes their values according to z′ = v and t′ = 1 but only as long as t ≤ ε holds; if the
current state is driving, the state can also switch at any time to start; if the current state
is stopped, the system will remain in this state. The safety property one would like to prove
is z < m ∧ ε > 0 ∧ v0 > 0→ [α]z < m

3 Our Approach: Graphical Representation and Contracts

The simple velocity controller specified by HP α above can be equivalently specified
as a Hybrid Automaton (HA) as shown in Fig.1. In addition to traditional HAs ([7]), our
diagram formulates not only the behaviour of the system, but also the safety property to be
proven in form of a pre-/post-condition pair. Furthermore, we use not only continuous states
(driving, stopped), but also a discrete state (labelled with SB := . . .) in order to execute
assignments. The dashed arrows from driving and stopped to the exit state should express,
that the system can abort at any time; thus the post-condition we formulate can rather be
read as an invariant of the system.
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«pre»

z < m

ε > 0 

v0   > 0 

 SB := m -  ε v0  

 

t:=0

stopped

[else]

v := 0

driving

z' = v

t' = 1

t ≤ ε 

[z < SB]

v := v0

 
«post»

z < m

Fig. 1. System specification in Hybrid Automaton - like notation

When trying to verify the system specified in Fig.1 with KeYmeara we would run in
the same problems as in the original case: the user has to provide the proof arguments to
KeYmeara in form of idiosyncratic proof rules.

Thus, in our approach, we will provide to KeYmeara a system specification that already
contains key facts for proving the correctness as shown in Fig.2.

«pre»

z < m

ε > 0 

v0   > 0

 
«entering»

z < m

SB := m -  ε v0  

«leaving»

z < m

SB = m -  ε v0  
 

t:=0

«entering»

z < m

[else]

v := 0

«entering»

zin < m - ε v0
v =  v0

[z < SB]

v := v0

stopped

«leaving»

z < m

 

driving

zout = zin + vt //z += vt

t ≥ 0 //substitutes t' = 1

t ≤ ε 

«leaving»

zout < m

«post»

z < m

Fig. 2. Proof contracts have been added

We allow the user to add pre-/post-conditions to every state in the Hybrid Automaton.
For example, we added zin < m − εv0 ∧ v = v0 as pre-condition and zout < m as post-
condition to state driving. Instead of proving pre→ [α]post for the whole system α, we have
now to prove for each state S the proof obligation preS → [αS ]postS and for all transitions
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T going from state S1 to state S2 the proof obligation postS1 ∧ condT → [actT ]preS2 where
condT , actT denote the condition and actions annotated with transition T .

To summarize, instead of one rather complex proof obligation (pre → [α]post) we use
KeYmeara now to prove many much smaller (and often even trivial) proof obligations, mostly
of them can be proven without any further user interaction.

4 Related Work

According to the nature of CPSs, we can identify three main techniques for their spec-
ification: (1) transition automata with discrete jumps, (2) continuous dynamic calculations
in each state (what makes the system to be a hybrid system) and (3) requirements or goals
which are interesting for a user to check.

In this section we browse among some known techniques to verify these parts which
issues we can face. We will use a simple demo system with the velocity controller and a
simple goal such as "z<m".

Firstly, the user’s goals about constant or unexpected behaviour can be easily trans-
formed to the LTL formulas with temporal operators "always" and "eventually". For exam-
ple, a goal (z<m) during execution a CPS system from the example can be expressed as a
globally [](z<m) LTL predicate. If we need a goal to be always right in the special states, we
can add the state variables and construct an LTL formula with logical operators like "and"
and "implication". This is a good and standard way to express the goals [13].

But after expressing the goals we will get a major issue when we will try to describe
the behaviour model of a system since it is hard to impossible to implement the continuous
(or at least close to continuous) dynamic behaviour in each state, even if we hard code the
mathematical expressions and solve it without loose of accuracy. The main problem here is
an explosion of the number of internal states and memory being used in a verifier to express
such a system.

According to the design of a well-known tool in Model Based Checking world, Spin’s
Promela language doesn’t include floating point arithmetic to the models, because the pur-
pose of the language is to encourage abstraction from the computational aspects and focusing
on the verification of process interaction [2]. So we need a more than integer-based arithmetic
and it can’t be done in the most of the cases.

Fig. 3. Derivatives in an invariant on a Uppaal model

Next, we can move to tools that use complicated automaton models, especially timed
automata. One great representative is Uppaal [4]. It offers construction of such extended
automata, check invariants and can verify properties expressed with modalities (i.e. always
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predicate). For example, if we would like to test the (z<m) property during particular system
run, we can check it dynamically by putting (z<m) as an invariant in desired states or
statically verify that goal by using a query with E[] (z<m) property. To describe the system
in the Uppaal, we should implicitly create the behaviour automaton. We can introduce
control variables and during transitions we can update them by calling our functions that
are being written in a code which almost looks like C. The creators of Uppaal made a big step
from ordinary discrete automaton - they introduce a SMC extension [5] that offers making
controlled non-determined transitions, adds double datatype to user’s code, adds floating-
point clocks type (user can specify the delta step for it in the settings) and they even
targeted to modelling and verifying hybrid systems by introducing time based derivatives in
the invariants.

The main disadvantage of writing code for hybrid systems in Uppaal (as in some other
tools) is that we should program it almost implicitly using the offered language and it is hard
to write complicated ODEs or other types of mathematical models. Uppaal supports time-
based derivatives, we can use for checking invariants when staying in a state (as an additional
way to check the correctness of a mathematical model implementation, see Figure 3).

Fig. 4. Annotations in the simple hybrid model in C

Lastly, we refer to the rich world of verification tools for C. Note, that a huge amount
of mathematical libraries has been written in C. The modular platform for static analysis
Frama-C [8] can prove a lot of types of C programs, it uses the deductive approach and
extends the Hoare logic to work with pointers, memory and various type conversions. The
floating point arithmetic is supported. They use a Weakest Precondition (WP) method and
the verification of the program in this case will consist of calculating the weakest precondition
from the end to the beginning of the function code and setting up the problem of proving the
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reverse derivation to the theorem prover (an internal and some externals interactive provers
can be used). So, it is a very strict method and to prove the function, all the precondition,
post-conditions, changes the variables, loops, internal function calls must be annotated in
a special form (see an invariant with (z<m) on Figure 4). The ISO-standardized language
ACSL [1] is used.

To verify the hybrid system with Frama-C, the mathematical model for it should be
solved (by direct or numerical methods) and annotated in C (and annotations can occupy
huge places in a code). There is no explicit way to write it in the terms of mathematics.

A similiar approach is pursuited by Ariadne [9], a framework implemented in C++. The
user can encode a CPS in form of a hybrid automaton including its requirements as instances
of C++ classes. More precisely, there are special classes for declaring states, transitions and
invariants of the modeled system. After defining the system, the user can execute code to
do reachability analysis and prove properties of the described system, especially for safety
verification. Ariadne allows parametric verification, which exhaustively checks all possible
values of the parameters and determines for which values the component obeys the guaran-
tees. For setting up physical formulas in a model, the user has to use overloaded operations,
which are not fully supported by the framework yet. Also, a graphical system representation
is not supported yet and enforces the user to work with plain C++-code all time.

5 Conclusion and Future Work

In this paper, we discussed one of the biggest barrier of verification tools such as
KeYmeara to get widely acceptance in industry: They assume the user to be highly trained
in mathematical logic and to know in detail the system’s proof rules. In addition, a partic-
ular problem of KeYmeara is the representation of a proof. The actual proof of a system
property can be saved by KeYmeara, but inspection of it by the user is very hard, since the
key ideas of a proof are cluttered by many other proof rule applications, which are necessary
to get a formal proof.

Based on a simple but typical example, we illustrated our new approach to let the user
annotate key proof facts in the system description itself. As a result, there are much more
proof obligations to be proven by KeYmeara, but they are much simpler now and require
much less user interaction while the formality of the proof is preserved.

So far, we treated the illustrated example as a pen-and-pencil case study. The next step
will be to build a prototypical front-end tool, that allows the user to specify the system
graphical as shown in Fig.2 and which will generate the proof obligations for KeYmeara
automatically.
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Abstract. One of the most simple models of computation which is suitable for rep-
resentation of reactive systems behaviour is a finite state transducer which operates
over an input alphabet of control signals and an output alphabet of basic actions.
A behaviour of such a reactive system displays itself in the correspondence between
flows of control signals and compositions of basic actions performed by the system.
We believe that behaviour of this kind requires more suitable and expressive means
for formal specifications than conventional LTL. In this paper we define some new (as
far as we know) extension LP-LTL of Linear Temporal Logic specifically intended for
describing the properties of transducers computations. In this extension the temporal
operators are parameterized by sets of words (languages) which âĂŃâĂŃrepresent
distinguished flows of control signals that impact on a reactive system. Basic pred-
icates in our variant of temporal logic are also languages in the alphabet of basic
actions of a transducer; they represent the expected response of a transducer to the
specified environmental influences. In our earlier papers we considered model check-
ing problem for LP-LTL and LP-CTL and showed that this problem has effective
solutions. The aim of this paper is to estimate the expressive power of LP-LTL
by comparing it with some well known logics widely used in computer science for
specification of reactive systems behaviour. We discovered that a restricted variant
LP-1-LTL of our logic is more expressive than LTL and another restricted variant
LP-n-LTL has the same expressive power as monadic second order logic S1S.

1 Introduction

Finite state transducers find applications in many branches of computer science, soft-
ware engineering, computational lingustics. They also provide the most simple model of
computation which is suitable for representation of reactive systems behaviour. At every
step of computation a transducer takes at its input a letter from an input alphabet and pro-
duces a sequence of letters (a word) from another output alphabet. The input letters may
be regarded as control signals received from the environment and the output letters may
be viewed as basic actions performed by a reactive system. A behaviour of such a reactive
system is characterized by a transformation of flows of control signals into compositions of
basic actions carried out by the system.

To construct a reliable information processing system it is crucial to be sure at the very
early stages of its designing that it will have a correct behaviour. In the case of a sequential
reactive system we assume that it behaves correctly when it gives adequate responses to
certain flows of control signals. Finite state transducers operating over semigroups of basic
actions, introduced and studied in [18], proved to be a suitable formal model for representing
such computations of sequential reactive system. But we need also some expressive and



convenient for use specification language which is adequate to this formal model. Then one
could develop verification algorithms for these models to solve such problems as equivalence
checking, deductive verification, or model checking.

When verification of transducers is concerned, to the extent of our knowledge, no special
purpose study of specification languages and model checking problem for this formal model
of computing system has been conducted so far. We think that this is due to the following
reason. The letters of input and output alphabets of a transducer can be regarded as valu-
ations of some set of basic predicates. Therefore, a transducer can be viewed as but a some
special representation of a labeled transition system (Kripke structure), and it is not worthy
of any particular treatment.

But our viewpoint is quite different. A behaviour of a transducer displays itself in the
correspondence between input and output words. A typical property of such behaviour to be
checked is whether for every (some) input word from a given pattern a transducer outputs
a word from another given pattern. When formally expressing the requirements of this kind
one needs not only temporal operators to specify an order in which events occur but also
some means to refer to such patterns. To this end Temporal Logics like LTL or CTL should
be modified in such a way as to acquire an ability to express such correspondences between
the sets of input words and the sets of output words. This could be achieved by supplying
temporal operators with patterns as parameters. Every such pattern is a formal description
(by means of automata, formal grammars, regular expressions, language equations, etc.)
of a language L over an input alphabet C. A basic property of output words can be also
represented by a language P over an output alphabet A. Then, for instance, an expression
GLP can be understood as the requirement that for every input word w from the language
L the output word h of a transducer belongs to the language P .

The advantages of this approach are twofold. Such extensions of Temporal Logics makes
it possible to express explicitly relationships between input and output words and thus
specify desirable behaviours of transducers. Moreover, it also assimilates some well-known
model checking techniques (see [1]) developed for conventional temporal logics. This idea was
first implemented in [8] where an LP-LTL specification language based on LTL temporal
logic was introduced. Next in [5] this approach was extended to branching time logics and
a variant of LP-CTL was introduced and studied.

The aim of this paper is to estimate the expressive power LP-LTL by comparing it with
some well known logics widely used in computer science for specification of reactive systems
behaviour. It is not possible to make such a comparative analysis in a straightforward way,
since the semantics of conventional temporal logics is defined on the structures different
from those used for LP-LTL. To overcome this difficulty we introduce two fragments of LP-
LTL (namely, LP-1-LTL and LP-n-LTL). The semantics of both fragments are adapted
to ω-words and they become comparable with Linear Temporal Logic (LTL) and the Sec-
ond Order Monadic Logic of One Successor (S1S). We discovered that LP-1-LTL is more
expressive than LTL and that LP-n-LTL has the same expressive power as S1S.

The paper is organized as follows. In Section 2 we define the concept of finite state
transducer as a formal model of sequential reactive systems. Next we describe the syntax
and the semantics of LP-LTL as a formal language for specifying behaviour of sequential
reactive systems. In Section 4 we introduce the fragments LP-1-LTL and LP-n-LTL of
LP-LTL and relate their semantics with ω-words. In this section we also establish the main
results of the paper and sketch their proofs. In Section 5 we make a brief comparison of
LP-LTL with other extensions of LTL and outline some tasks for our further research.
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2 Finite state transducers as models of reactive systems

Let C and A be finite sets of signals and basic actions respectively. A reactive computing
system receives control signals from the environment and reacts to these signals by perform-
ing basic actions. Finite words over C are called signal flows; the set of all signal flows is
denoted by C∗. Finite words over A are called compound actions; they denote sequential
compositions of basic actions. The set of all compound actions is denoted by A∗. Given a
pair of words u and v we write uv for their concatenation, and denote by ε the empty word.

Definition 1. A Finite State Transducer (FST) over the alphabets C and A is a quin-
tuple Π = (Q, C,A, qinit, T ), where 1) Q is a finite set of control states, 2) qinit ∈ Q is an
initial control state, and 3) T ⊆ Q× C ×Q×A∗ is a finite transition relation.

Each tuple (q′, c, q′′, h) in T is called a transition: when a transducer is in a control
state q′ and receives a signal c, it changes its state to q′′ and performs a compound action
h. We denote such transition by q′

c, h−−→ q′′. A behaviour of a FST Π can be defined in
terms of runs and trajectories. A run of a FST Π is any infinite sequence of transitions:
run = q1

c1, h1−−−→ q2
c2, h2−−−→ · · · cn, hn−−−−→ qn+1, . . . ; if q1 = qinit then the run is called initial run.

Definition 2. Given a compound action s0 and a run of a FST Π we define a trajectory
of FST Π as the pair tr = (s0, α), where the sequence α = (c1, s1), (c2, s2), . . . , (ci, si), . . . ,
is such that si = si−1hi holds for every i, i > 1.

A trajectory represents a possible scenario of a behaviour of a sequential reactive system
in response to the signal flow w = c1c2 . . . ci . . . in the event that it has previously performed
the compound action s0. When run is an initial run of Π and s0 = ε then the corresponding
trajectory is called initial. The set of all initial trajectories of a FST Π is denoted by Tr(Π).
By tr|i we mean a trajectory (si, α|i), where α|i = (ci+1, si+1), (ci+2, si+2), . . . is a suffix of α.

3 LP-LTL specification language

When designing sequential reactive systems one should be provided with a suitable for-
malism to specify the requirements for their desirable behaviour. Many requirements which
refer to the correspondences between control flows and compound actions in the course of
FST runs can be specified by means of Temporal Logics. When choosing a suitable temporal
logic as a formal specification language of FST behaviours one should take into account two
principal features of our model of sequential reactive systems:

1. since a FST operates over compound actions, the basic predicates must be interpreted
over the set A∗, and

2. since a behaviour of a FST depends not on the time flow itself but on a signal flow,
temporal operators must be parameterized by descriptions of admissible signal flows.

To adapt traditional temporal logic formalism to these specific features of FST behaviours
the authors of [8] introduced a new variant of Linear Temporal Logic (LTL). In general case
one may be interested in checking the correctness of FST’s responses to an arbitrary set of
signal flows. Every set of control flows may be regarded as a language over the alphabet C of
signals. Therefore, it is reasonable to supply temporal operators ("globally” G, "eventually”
F, etc.) with certain descriptions of such languages as parameters. These languages will be
called environment behaviour patterns.
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A reactive system performs compound actions in response to control signals from the
environment. Therefore, basic predicates used in LTL formulae may be viewed as some sets
of such compound actions P, P ⊆ A∗, i.e. languages over the alphabet A. As in the case
of environment behaviour patterns we may distinguish a certain class P of languages and
use them as specifications of basic predicates. When these languages are used in temporal
formulae then it will be assumed that they are defined constructively by means of automata,
grammars, Turing machines, etc.

Thus, we arrive at the concept of LP-variants of Temporal Logics.

Definition 3. Select an arbitrary family of environment behaviour patterns L and a family
of basic predicates P. The set of LP-LTL formulae are defined as follows:

1. each basic predicate P from P is a formula;
2. if ϕ1, ϕ2 are formulae then ¬ϕ1 and ϕ1 ∧ ϕ2 are formulae;
3. if ϕ1 and ϕ2 are formulae, c ∈ C, and L ∈ L then Xcϕ1, Ycϕ1, FLϕ1, GLϕ1, and

ϕ1 ULϕ2 are formulae.

The specification language LP-LTL is the set of all formulae as defined above.

Now we introduce the semantics of LP-LTL. The formulae are interpreted over the
trajectories of FSTs. Let Π be a FST, and tr = (s0, α) be a trajectory of Π such that
α = (c1, s1), (c2, s2), . . . , (ci, si), . . . . Then for every formula ψ we write tr |= ψ to denote
the fact that the assertion ψ holds for the trajectory tr of Π.

Definition 4. The satisfiability relation |= is defined by induction on the height of for-
mulae:

1. tr |= P ⇐⇒ s0 ∈ P ;
2. tr |= ¬ϕ⇐⇒ it is not true that tr |= ϕ;
3. tr |= ϕ1 ∧ ϕ2 ⇐⇒ tr |= ϕ1 and tr |= ϕ2;
4. tr |= Xcϕ⇐⇒ c = c1 and tr|1 |= ϕ;
5. tr |= Ycϕ ⇐⇒ either c 6= c1, or tr|1 |= ϕ;
6. tr |= FLϕ ⇐⇒ ∃i > 0: c1c2 . . . ci ∈ L and tr|i |= ϕ;
7. tr |= GLϕ ⇐⇒ ∀i > 0: if c1c2 . . . ci ∈ L then tr|i |= ϕ;
8. tr |= ϕULψ ⇐⇒ ∃i > 0: c1c2 . . . ci ∈ L such that tr|i |= ψ and ∀j, 0 6 j < i, if

c1c2 . . . ci ∈ L then tr|j |= ϕ.

Observe, that operators Xc and Yc, as well as FL and GL, are dual to each other. As usual,
other Boolean connectives like ∨,→,≡ may be defined by means of ¬ and ∧. Some other
LTL operators like, for example, R (release) or W (weak until) may be parametrized by
environmental behaviour patterns in the same way.

Definition 5. The model checking problem for FSTs against LP-LTL specifica-
tions is as follows: given a FST Π and an LP-LTL formula ϕ, check whether tr |= ϕ holds
for every initial trace tr from Tr(Π).

In [8] it was shown that model checking problem for LP-LTL is decidable in double
exponential time when environment behaviour patterns and basic predicates are specified
by deterministic finite state automata. In the same way as it was made above the syntax
and the semantics of LP-CTL was introduced in [5]. In this paper it was proved that model
checking problem for LP-CTL can be solved in exponential time. Basic actions of FSTs may
have a more sophisticated interpretation: they may be considered as generating elements of
some semigroup. In [4] it was proved that model checking problem for FSTs operating over
free commutative semigroups of actions is undecidable.
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4 On the expressive power of some fragments of LP-LTL

In the previous sections, we refer to FST, first of all, to emphasize the origin and purpose
of LP-LTL. By choosing different classes of languages âĂŃâĂŃfor defining environment
behaviour patterns and basic predicates, we can vary the expressive possibilities of LP-
LTL. We would like to find out how widely the expressiveness of this logic can vary. The
aim of this paper is to compare the expressive power of three logics LTL, S1S, and LP-LTL
used as specification languages of reactive systems.

Definition 6. When the semantics of two logics L1 and L2 are defined on the same class
of interpretations then we say that a formula ψ1 from L1 is equivalent to a formula ψ2

from L2 if I |= ψ1 ⇔ I |= ψ2 holds for every interpretation I. A logic L1 is at least as
expressive as L2 (L2 4 L1 in symbols) if for any formula in L2 there exists an equivalent
formula in L2. Two logics L1 and L2 are equally expressive (L2 ≡ L1 in symbols) if
L2 4 L1 and L1 4 L2. We say that L1 is more expressive than L2 (L2 ≺ L1 in
symbols) if L2 4 L1 and L2 6≡ L1.

As it can be seen from these definitions, only those pairs of logics are comparable, the
semantics of which are defined over the same class of interpretation. The semantics of LTL
and S1S can be defined over ω-words. This makes LTL and S1S comparable, and, as it
was shown in [14,16], LTL ≺ S1S. But the semantics of LP-LTL is defined over another
class of interpretations — trajectories, — that, in fact, may be viewed as pairs of ω-words.
Therefore, to compare the expressive power of LP-LTL, LTL and S1S we single out two
fragments of LP-LTL, the semantics of which can be defined over ω-words.

The formulae of the first fragment LP-1-LTL are defined over 1-letter alphabet C = {c}
of signals and an arbitrary finite alphabet of basic actions A = {a1, a2, . . . , an}. A class L
of environment behaviour patterns used in the formulae of this fragment is the family of all
regular languages over C. A class P of basic predicates includes only n such predicates which
are regular languages of the form Pi = {hai : h ∈ A∗}, 1 6 i 6 n. Then we say that ω-word
w = ai1ai2 . . . aim . . . satisfies a formula ψ′ from LP-1-LTL iff tr′ |= ψ′, where tr′ = (ε, α′w),
and α′w = (c, ai1), (c, ai1ai2), . . . , (c, ai1ai2 . . . aim), . . . .

The second fragment LP-n-LTL differs from the first one only in that the alphabets
A and C coincide, i.e. C = A = {a1, a2, . . . , an}. Then we assume that ω-word w =
ai1ai2 . . . aim . . . satisfies a formula ψ′′ from LP-n-LTL iff tr′′ |= ψ′′, where tr′′ = (ε, α′′w),
and α′′w = (ai1 , ai1), (ai2 , ai1ai2), . . . , (aim , ai1ai2 . . . aim), . . . .

To carry out a comparative analysis of the above-mentioned logics within the framework
of common concepts and for the sake of clarity we give below an alternative definition of
their semantics solely on the basis of ω-words. Let Σ = {a1, a2, . . . , an} be a finite alphabet.

Definition 7. An ω-word w is any mapping w : N0 → Σ, where N0 is the set of non-
negative integers.

The set of all ω-words is denoted by Σω. We use the notation w|k for the k-th suffix
of w which is an ω-word v such that v(i) = w(i + k) for every i, i > 0. We also write
w[0 . . . k] to denote the k-th prefix of w which is a finite word w(0)w(1) . . . w(k). By Reg1

we mean the family of all regular languages over a 1-letter alphabet C = {c}. Since we are
only concerned with the expressive power of logics, the ways of specifying these languages
âĂŃâĂŃare indifferent. When L is a language from Reg1 we will write i ∈ L instead of
ci ∈ L. By Regn we denote the family of all regular languages over the alphabet Σ.

The formulae of LP-1-LTL are built of letters from Σ (they are regarded as atomic
propositions) by means of Boolean connectives ¬,∧ and temporal operators X, FL, GL,
and UL parameterized by languages L from Reg1.
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Definition 8. The formal semantics of LP-1-LTL formulae is defined through the satis-
fiability relation w |= ψ on the set of ω-words:

1. for an atomic formula a ∈ Σ: w |= a⇐⇒ w(0) = a;
2. w |= ¬ϕ⇐⇒ it is not true that w |= ϕ;
3. w |= ϕ ∧ ψ ⇐⇒ w |= ϕ and w |= ψ;
4. w |= Xϕ⇐⇒ w|1 |= ϕ;
5. w |= FLϕ⇐⇒ ∃ i > 0 such that i ∈ L and w|i |= ϕ;
6. w |= GLϕ⇐⇒ ∀ i > 0 if i ∈ L then w|i |= ϕ;
7. w |= ϕULψ ⇐⇒ ∃ i > 0 such that i ∈ L and w|i |= ψ, and ∀ j, 0 6 j < i, if j ∈ L then

w|j |= ϕ.

An example of a formula in LP-1-LTL is an expression G(cc)∗a. As it may be seen from
the definition above, an ω-word w satisfies this formula iff w(2i) = a for every i, i > 0.

It is easy to see that temporal logic LTL is a subset of LP-1-LTL which allows the only
regular language C∗ for parameter of temporal operators. Thus, LTL 4 LP-1-LTL.

Theorem 1. LTL ≺ LP-1-LTL

Proof. (Sketch). In [16] it was shown that no LTL formula can express the property of an
ω-word to have a given letter in every k-th position for any k, k ≥ 2. As a minor innovation
we give an alternative proof of this fact by means of Ehrenfeucht-Fraïssé games (see [2]). ut

The syntax of LP-n-LTL formulae differs from that of LP-1-LTL in three aspects:

1. the neXttime operator X has the dual counterpart Y;
2. both operators X and Y are parametrized by letters from Σ: Xa, Yb;
3. temporal operators FL, GL and UL are parametrized by regular languages from Regn.

Definition 9. The satisfiability of LP-n-LTL formulae on ω-words is defined as follows:

1. the satisfiability of atomic formulae, negation ¬ and conjunction ∧ is defined exactly as
in the case of LP-1-LTL;

2. w |= Xcϕ⇐⇒ w(0) = c and w|1 |= ϕ;
3. w |= Ycϕ⇐⇒ w(0) 6= c or w|1 |= ϕ;
4. w |= FLϕ⇐⇒ ∃ i > 0 such that w[0 . . . i] ∈ L and w|i |= ϕ;
5. w |= GLϕ⇐⇒ ∀ i > 0 if w[0 . . . i] ∈ L then w|i |= ϕ;
6. w |= ϕULψ ⇐⇒ ∃ i > 0 such that w[0 . . . i] ∈ L and w|i |= ψ, and ∀ j, 0 6 j < i, if

w[0 . . . j] ∈ L then w|j |= ϕ.

It is clear that LP-n-LTL is at least as expressive as LP-1-LTL. We will show that it
has the same expressive power as S1S. It is well-known (see a survey in [12]) that three
following assertions concerning an ω-language L are equivalent:

– there exists a S1S formula Φ such that L = {w : w |= Φ},
– L is an ω-regular language,
– L is recognizable by a Buchi (Rabin, Muller, Street) automaton.

Therefore, instead of dealing with S1S we compare the expressive power of LP-n-LTL with
that of finite state ω-automata.

Definition 10. An ω-automaton is a quintuple A = (Σ,Q,Q0, ∆,F), where Σ is a finite
alphabet, Q is a finite set of states, ∆ ⊆ Q×Σ ×Q is a transition relation, Q0 ∈ Q is a set
of initial states, F is an acceptance rule.
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An ω-automaton is called deterministic if Q0 = {q0}, and for each pair of a state q
and a letter a there exists only one state q′ ∈ Q, such that (q, a, q′) is a transition of the
automaton. A run of an automaton A on an infinite word w is a map ρ : N0 → Q such that

1. the first state is initial, i. e. ρ(0) ∈ Q0, and
2. for each i the transition from ρ(i) to ρ(i+ 1) by a letter w(i) is done with respect to ∆,

i. e. (ρ(i), w(i), ρ(i+ 1)) ∈ ∆.

By inf(ρ) we denote a set of all those states that occur infinitely often in ρ.
In this paper we consider Büchi automata and Muller automata which differ in their

acceptance rules. An acceptance rule of a (generalized) Büchi automaton B is a subset a
family F = {F1, F2, . . . , Fm}, of subsets Fi, Fi ⊆ Q, 1 6 i 6 m, of states of B.

Definition 11. A Büchi automaton B accepts an ω-word w iff there exists a run ρ of B on
w, such that inf(ρ) ∩ Fi 6= ∅ for each i, 1 6 i 6 m.

An acceptance rule of a Muller automatonM is a family F = {E1, E2, . . . , Em} of subsets
Ei, Ei ⊆ Q, 1 6 i 6 m, of states of M .

Definition 12. A Muller automaton M accepts ω-word w iff there exists a run ρ of M on
w, such that inf(ρ) ∈ F . A set of ω-words accepted by an automaton A is denoted by L(A).

Theorem 2. LP-n-LTL ≡ S1S.

Proof. (Sketch) It is sufficient to show that the properties of ω-words expressed by LP-n-
LTL formulae are exactly all ω-regular languages. It can be proved by constructing, for
every LP-n-LTL formula ψ, a nondeterministic Büchi automaton Bψ such that L(Bψ) =
{w | w |= ψ}. On the other hand, for every deterministic Muller automaton M it there can
be constructed such an LP-n-LTL formula ψM that L(M) = {w | w |= ψM}. ut

5 Related papers and conclusion

Since the publication of the paper [3] when the expressive capabilities of LTL logic
were fully realized, several attempts have been made to increase its expressiveness while
preserving the complexity of decision procedures. The authors of [6] defined a Process Logic
which subsumes a number of other logics (Propositional Dynamic Logic (PDL), ParikhâĂŹs
SOAPL, NishimuraâĂŹs process logic, and LTL) but but it turned out that the complexity
of decision problems for this logic is very high. In [11] quantifiers on basic propositions were
added to the syntax of LTL. In [16] right-linear grammar patterns were offered to define
new temporal operators. The same kind of temporal patterns but specified by means of
finite state automata were introduced in [9,13]. Of course, fixed-point extension µ-LPL has
not been ignored, it is the topic of research in [15]. The authors of [10] presented a Regular
LTL which generalizes LTL with the ability to use regular expressions in the context of
Until temporal operator. For all these extensions (but µ-LTL) it was proved that they have
the same expressiveness as S1S and retain PSPACE-complexity of satisfiability checking
problem. In our case we did not set ourselves the goal of merely expanding the expressive
possibilities of LTL; we just tried to make LTL more adequate for describing the behaviour
of reactive systems. Nevertheless, as it follows from Theorem 2 we achieve almost the same
effect as the other extensions of LTL in [9,11,13,15,16].

The idea of providing parametrization of temporal operators is also not new: almost
the same kind of parametrization is used in Dynamic LTL [7]. In fact, the fragment LP-
n-LTL is almost the same as DLTL defined in [7]. But our extension of LTL differs from
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that which was developed in [7] in that basic predicates are also parameterized. Such a
parametrization gives us a possibility to introduce the fragment LP-1-LTL which could
display some interesting features. Every extension of LTL introduced in [7,11,13,15,16] is
as expressive as LTL or S1S. But LP-1-LTL is more expressive than pure LTL and it is
doubtful that it has the same expressive power as LP-n-LTL. If our hypothesis turned out
to be correct, then we could for the first time discover such an extension of LTL, which
occupies an intermediate position between FO(<) and S1S. Another line of further research
is to estimate how much (or less) succinct are these fragments of LP-1-LTL in comparison
with other extensions of LTL.

The authors of the article thank the anonymous reviewers for their valuable comments
and advice on improving the article. This work was supported by the Russian Foundation
for Basic Research, Grant N 18-01-00854.
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Polyprograms and polyprogram bisimulation
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Abstract. A polyprogram is a generalization of a program which admits multiple
definitions of a single function. Such objects arise in different transformation systems,
like the Burstall-Darlington framework or equality saturation. In this paper we intro-
duce the notion of a polyprogram in a non-strict first-order functional language. We
define denotational semantics for polyprograms and describe some possible transfor-
mations of polyprograms. We also introduce the notion of polyprogram bisimulation
which enables a powerful transformation called merging by bisimulation, correspond-
ing to proving equivalence of functions by induction or coinduction.

1 Introduction

Many program transformation methods can be seen as special cases of the Burstall-
Darlington framework [2]. The idea behind this framework consists in viewing a program as
a set of equations and then transforming this set by inferring new equations. Such a set of
equations is essentially a program without the uniqueness constraint on the definitions of its
functions, thus we propose to call it a polyprogram (short for “polyvariant program”, a term
coined by Bulyonkov).

Equality saturation [7] may also be considered an instance of the Burstall-Darlington
framework if we restrict ourselves to so-called decomposed polyprograms. In decomposed
polyprograms every definition has a very simple form containing only one nontrivial lan-
guage construct, thus decomposed polyprograms are essentially closer to ASTs and E-PEGs
(E-PEG is a Program Expression Graph with an Equivalence relation on nodes [7]), defini-
tions of polyprograms corresponding to nodes and outgoing edges of E-PEGs, and functions
corresponding to classes of node equivalence. DecomposedD polyprograms can be repre-
sented as graphs, so they are better for implementation and formulation of transformations.
Every complex definition can be split into several simple definitions by introducing interme-
diate functions, so every polyprogram can be transformed into a decomposed one.

One of the transformation rules of the Burstall-Darlington framework is called redefini-
tion. It allows replacing one function for another if they have isomorphic recursive definitions.
In this paper we show how this rule can be formulated using the notion of polyprogram bisim-
ulation, which has the benefit of dealing with situations when the definitions are not exactly
isomorphic (e.g. the functions are equal only up to argument permutation). Thus, we prefer
to call this transformation rule merging by bisimulation.

This paper is a continuation of work on equality saturation for functional languages [4].
The main contributions of this paper are:

1. articulation of the notion of a polyprogram;
2. a polyprogram-based formulation of equality saturation which shows the connection

between equality saturation and the Burstall-Darlington framework;



3. the notion of polyprogram bisimulation and an algorithm for enumerating polyprogram
bisimulations.

The paper is structured as follows: first of all, we describe the language we will use
throughout the paper and give the definitions of a polyprogram and a decomposed polypro-
gram in this language (Section 2), then we show some basic transformation rules (Section 3),
and after that we introduce the notion of polyprogram bisimulation and present an algorithm
enumerating bisimulations (Section 4).

2 Polyprograms

In this paper we will use a simple first-order language. We will denote variables with
letters x, xi (from X ), functions names with f, fi (from a set of functional symbols F), and
constructors with C,Ci. A set of functional symbols is just a set F equipped with an arity
function arity : F → N.
Definition 1. A polyprogram (in our language) is a set of definitions of the form f(x1..xn) ≡
e where e has the following form1:

e ::= x | f(e1..em) | C(e1..em) | case e0 of { Ci(xij) → ei; }

where there is no variable duplication in case patterns and in left hand sides of definitions.
In a polyprogram each function is allowed to have any number of definitions. The inten-

tion is that such definitions should be semantically equal, but may be different performance-
wise. Here is an example of a polyprogram:

not(t) ≡ case t of {F → T ;T → F}
even(x) ≡ case x of {Z → T ;S(y)→ odd(y)}
even(x) ≡ not(odd(x))
odd(x) ≡ case x of {Z → F ;S(y)→ even(y)}
odd(x) ≡ not(even(x))

Definition 2. A polyprogram in decomposed form, or just decomposed polyprogram, is a
polyprogram such that all right hand sides of its definitions have the following form:

e ::= r | x | f(r1..rm) | C(r1..rm) | case r0 of { Ci(xij) → ri; }
r ::= f(x1..xl), where all xj differ from each other

This form is not very human-readable, but it is better suited for reasoning and imple-
mentation. Consider the following polyprogram consisting of one definition:

f(x, z) ≡ case x of {Z → Z;S(y)→ f(y, y)}

To transform it into a decomposed polyprogram, we have to factor out subexpressions x, Z,
y, and f(y, y) (the last one because it has variable duplication). This gives us the following
decomposed polyprogram:

f(x, z) ≡ case id(x) of {Z → g();S(y)→ h(y)}
id(x) ≡ x
g() ≡ Z
h(y) ≡ f(id(y), id(y))

1 e〈i〉 expands to e〈1〉..e〈n〉 for some n = max i
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2.1 Polyprogram semantics

It is straightforward to define denotational semantics for polyprograms. However, in-
stead of considering only the least fixed point, we will consider all fixed points, or models,
because this makes semantics compositional, i.e. we can replace polyprogram fragments with
semantically equivalent fragments without changing the meaning of the whole polyprogram.

Let A be the greatest fixed point of the following equation:

A = {C(a1..an) | ai ∈ A, C is a constructor} ∪ {⊥}.

Let D be the set of continuous functions over A of arbitrary arity (i.e. D =
⋃
n[An → A]).

Now let’s define the notion of an interpretation.
Definition 3. Let P be a polyprogram with the set of function names F . Then an inter-
pretation of P is a function η : F → D such that arity(η(f)) = arity(f).

Now let’s define the valuation of a term t given an interpretation η and a valuation of
variables ν : X → A, written [|t|]η,ν :

[|x|]η,ν = ν(x)

[|f(e1, . . . , en)|]η,ν = η(f)([|e1|]η,ν . . . [|en|]η,ν)

[|C(e1..en)|]η,ν = C([|e1|]η,ν . . . [|en|]η,ν)

[|case e0 of {Ci(y1..ym)→ ei}|]η,ν = [|ek|]η,ν{yi→ai}
where [|e0|]η,ν = Ck(a1..am) for some k ∈ {1..max i}

Given a definition d, its valuation [|d|]η is a boolean defined as follows:

[|e1 ≡ e2|]η = (∀ν.[|e1|]η,ν = [|e2|]η,ν)

Definition 4. An interpretation µ is called amodel of a polyprogram P if for every definition
d ∈ P , [|d|]µ is true.

3 Polyprogram transformation rules

According to both the Burstall-Darlington framework and equality saturation, polypro-
grams should be transformed with some rules which add new function definitions to a
polyprogram. After that a new program may be extracted from the polyprogram by choosing
a single definition for each function.

We will write rules as P1 7→ P2. Application of such a rule to a polyprogram consists in
replacing the subpolyprogram corresponding to the left hand side up to function and variable
renaming with the right hand side. We will assume that rules may add new definitions and
functions, and also remove some definitions

We will consider only a couple of basic rules in two different styles: in the style of the
Burstall-Darlington framework and in the style of equality saturation. The latter one assumes
that polyprograms are in decomposed form.

3.1 Rules in the style of the Burstall-Darlington framework

Unfolding {
f(xi) ≡ E〈g(ej)〉
g(yj) ≡ H

}
7→


f(xi) ≡ E〈g(ej)〉
g(yj) ≡ H
f(xi) ≡ E〈H{yj 7→ ej}〉


This rule substitutes a function call with the function’s body.
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Folding {
f(xi) ≡ H〈E{yj 7→ zj}〉
g(yj) ≡ E

}
7→


f(xi) ≡ H〈E{yj 7→ zj}〉
g(yj) ≡ E
f(xi) ≡ H〈g(zj)〉


This rule does the inverse: it replaces an instance of some function’s body with a call of
this function. Note that it is less powerful than the corresponding rule from the paper by
Burstall and Darlington.

3.2 Rules in the style of equality saturation

Decomposed polyprograms are very similar to E-PEGs from the work of Tate et al. on
equality saturation. They enable more effective sharing of subexpressions, which is crucial
for big polyprograms, especially when a simple heuristic-free rule application strategy is
used, as in equality saturation.

However, rules in the form from the previous subsection cannot be applied to decomposed
polyprograms simply because their right hand sides are not in decomposed form. The easiest
solution is to rewrite rules in such a way that both their sides are in decomposed form. In
this case rules will not only be applicable to decomposed polyprograms but also will preserve
them in decomposed form.

Transitivity with symmetry

{
f(xi) ≡ E
g(yj) ≡ E

}
7→


f(xi) ≡ E
g(yj) ≡ E
f(xi) ≡ g(yj)


This rule is analogous to folding. It infers function equivalence from their having coinciding
definitions.

Congruence {
g(yj) ≡ h(yθ(j))

D〈g(ej)〉

}
7→

{
g(yj) ≡ h(yθ(j))

D〈h(eθ(j))〉

}
This rule allows propagating information about function equivalence by replacing one func-
tion with another. This rule is best applied to every call site of the function being replaced
at once: in this case we can simply remove the old function from the polyprogram. We will
call such a procedure merging by congruence since the functions are effectively merged.

Deduplication {
f(xi) ≡ E
f(xi) ≡ E

}
7→
{
f(xi) ≡ E

}
This rule is used after merging by congruence to remove coinciding definition of a function.
Its only purpose is to reduce memory consumption. The three aforementioned rules together
implement congruence closure [5] which lies at the heart of equality saturation.

The unfolding rule breaks apart into several simpler rules. For brevity we show only one
of these rules. The most interesting thing is that we don’t need a separate operation for
substitution into an expression (E{x 7→ e}) since non-elementary function calls play the
role of explicit substitutions.
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Unfolding of function consisting of a function call

{
f(xi) ≡ h(ej(xi))

h(yj) ≡ g(dk(yj))

}
7→



f(xi) ≡ h(ej(xi))

h(yj) ≡ g(dk(yj))

f(xi) ≡ g(qk(xi))

qk(xi) ≡ dk(ej(xi))


4 Polyprogram bisimulation

Merging by bisimulation is a generalization of the redefinition rule from the Burstall-
Darlington framework. Consider the following polyprogram:

f() ≡ S(f())
g() ≡ S(h())
h() ≡ S(g())

The goal is to infer f() ≡ g(). Turns out, this cannot be done directly with the simple rules
mentioned above, so we need something more powerful. In this case the definitions of these
functions are not even isomorphic, so we need a more general relation than isomorphism,
which we will call a bisimulation because it remotely resembles the notion of bisimulation
for labeled transition systems.

4.1 The notion of polyprogram bisimulation

First of all, let’s give some auxiliary definitions. If θ is a function from {1..m} to {1, . . . , n}
(which we will write just as θ : m→ n) then it can be applied to any functional symbol to
permute, omit and duplicate its parameters. We will write this application simply as θf and
will use the following reduction rule:

(θe0)(e1..en) ; e0(eθ(1)..eθ(m))

Definition 5. A morphism of functional symbols from F1 to F2 is a function φ that maps
each functional symbol f ∈ F1 to a pair φ(f) = (θ, h) where h ∈ F2 and θ : arity(h) →
arity(f).

Morphisms of functional symbols can be applied to definitions and polyprograms. If d
is a definition then φ(d) is obtained by replacing all function names f in d with θh, where
(θ, h) = φ(f), with subsequent normalization with respect to ;. If P is a polyprogram then
φ(P ) = {φ(d) | d ∈ P}.

Note that even if P is a polyprogram, φ(P ) is not necessarily a polyprogram, because φ
may introduce variable duplication in left hand sides of definitions. We will call such objects
quasipolyprograms.

We will call two definitions α-equivalent, written d1 ≈ d2, if they are equal up to variable
renaming. We will use the notation P1 v P2 if P1 is a subpolyprogram of P2 up to α-
equivalence of its definitions.

Definition 6. A polyprogram bisimulation over a polyprogram P is a polyprogram B with
two morphisms of functional symbols φ and ψ such that φ(B) v P , ψ(B) v P , and if a
function f ∈ B has no definitions then φ(f) = ψ(f).
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Polyprogram bisimulations are useful for proving equivalence of functions (and subse-
quently merging them, the transformation we call merging by bisimulation) using the fol-
lowing theorem.
Theorem 1. Let B with φ and ψ be a polyprogram bisimulation over P . If for every
interpretation ν of B’s functions without definitions there is only one model µ that coincides
with ν on B’s functions without definitions then it is possible to add into P definitions of
the following form for each function f ∈ B without changing the set of models of P :

g(xθ(1)..xθ(m)) ≡ h(xξ(1)..xξ(n))

where (θ, g) = φ(f), (ξ, h) = ψ(f), m = arity(g), n = arity(h).
Not every bisimulation is good enough for merging by bisimulation, because it must

also satisfy the model uniqueness property. To test this property some decidable sufficient
conditions may be used, like structural and guarded recursion [1], or the presence of ticks [6].
This topic is out of scope of this paper.

4.2 Enumerating bisimulations

Here we will assume that polyprograms are in decomposed form. There is an infinite
number of polyprogram bisimulations, so we are going to present an algorithm that pro-
duces an infinite stream polyprogram bisimulations. It can be informally outlined in the
following way: first enumerate prebisimulations, quasipolyprograms that are precursors of
bisimulations, and then transform each prebisimulation into a polyprogram bisimulation if
possible.

Prebisimulations will be quasipolyprograms consisting of products of definitions of the
original polyprogram. The notion of a product of two definitions def-product(d1, d2) is for-
mally specified as follows.
Definition 7. Let d and d′ be two decomposed definitions with the same language construct,
the same number of function calls and the same number of variables bound by corresponding
patterns. Assume also that corresponding variables in corresponding patterns of the two
definitions have coinciding names, and also if the right hand sides have the form x then x is
the same for both definitions, but there are no more variable collisions between the definitions
(these requirements may be satisfied by applying α-conversion). Then the product of these
definitions is a definition which is presented as follows:

def-product(f(x1, . . . , xn) ≡ xi, f ′(y1, . . . , ym) ≡ yj) =
= 〈f, f ′〉(x1 . . . xn, y1 . . . yj−1, xi, yj+1ym) ≡ xi

def-product(f(x) ≡ h(g1(x1), . . . , gn(xn)),
f ′(y) ≡ h′(g′1(y1), . . . , g′n(y1))) =

= 〈f, f ′〉(x, y) ≡ 〈h, h′〉(〈g1, g
′
1〉(x1, y1), . . .)

def-product(f(x) ≡ C(g1(x1), . . . , gn(xn)),
f ′(y) ≡ C(g′1(y1), . . . , g′n(y1))) =

= 〈f, f ′〉(x, y) ≡ C(〈g1, g
′
1〉(x1, y1), . . .)

def-product(f(x) ≡ case g0(x0) of {C1(z1)→ g1(x1); . . .},
f ′(y) ≡ case g′0(y0) of {C1(z′1)→ g′1(x′1); . . .}) =

= 〈f, f ′〉(x, y) ≡ case g0(x0, x′0) of
{C1(z1)→ 〈g1, g

′
1〉(w1, w′1{z′1 7→ z1}); . . .}
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Here 〈f, g〉 denotes a unique functional symbol corresponding to f and g with arity arity(f)+
arity(g).

Its idea is to combine every pair of corresponding functions into a single one with their
parameter lists concatenated, e.g.:

def-product((f(x) ≡ x), (g(y) ≡ y)) = (〈f, g〉(x, x) ≡ x)
def-product((f(x, z) ≡ case h() of {S(y)→ g(x, y)}),
(f ′(x) ≡ case h′(x) of {S(y)→ g′(y, x)})) =
= (〈f, f ′〉(x, z, x′) ≡ case 〈h, h′〉(x′) of {S(y)→ 〈g, g′〉(x, y, y, x′)})

A function enumerating prebisimulations in the form of trees with back edges growing
from a pair of functions is formally defined as follows.

prebisimulations(P, f, f ′) = B
where (_, B) = prebisimulations′(P, f, f ′, {})

prebisimulations′(P, f, f ′, history)
= {(fnew, {}) | f = f ′}
∪ {(fold, {}) | (f, f ′, fold) ∈ history}
∪ {(fnew, {q′} ∪B1 ∪ . . . ∪Bn) |

d = (f(. . .) ≡ L(. . .)) ∈ P,
d′ = (f ′(. . .) ≡ L(. . .)) ∈ P,
such that def − product(d, d′) is defined,
q = def − product(d, d′),
(〈f, f ′〉(. . .) ≡ L((λy → 〈g1, g

′
1〉(. . .)), . . .)) = q,

history′ = history ∪ {(f, f ′, fnew)},
(hi, Bi) ∈ prebisimulations ′(P, gi, g

′
i, history

′),
q′ is q with 〈f, f ′〉 replaced with fnew

and 〈gi, g′i〉 replaced with hi}
where fnew = 〈f, f ′, l〉 where l is a fresh unique label
fnew textrmhasarity arity(f) + arity(f ′)

Its idea is to traverse the polyprogram P in depth-first order simultaneously from the
functions f and f ′. A branch may be finished if we encounter a pair of coinciding functions
(reflexivity) or a pair of functions which we have already visited (folding). If we do not finish
the branch then we choose a pair of definitions of these functions such that the product of
these definitions is defined, and descend to pairs of corresponding functions in their right
hand sides.

Now let’s define two morphisms, π1(〈f1, f2, l〉) = (γ1, f1) where γ1(i) = i, and
π2(〈f1, f2, l〉) = (γ2, f2) where γ2(i) = i+arity(f1). A prebisimulation with π1 and π2 is not a
bisimulation mainly because it may contain duplicate variables introduced by def−product.
To transform it to a polyprogram bisimulation these variables should be merged. To do so,
we will propagate variable equivalence with the following transformation:
Definition 8. Let Q be a quasipolyprogram and f(x1..xn) be a term from some of Q’s
definitions such that xi and xj coincide. The following transformation is called variable
equivalence propagation step: for every definition containing a term f(y1..yn) replace yj with
yi in the whole definition.

If variable equivalence is fully propagated then parameter positions of every function
may be partitioned into equivalence classes such that for every term f(x1..xn), xi and xj
coincide iff i and j are from the same class. Then the arity of the function may be reduced
by collapsing parameters from the same class into one. The resulting quasipolyprogram will
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be a polyprogram. Note that we still need to check if the resulting polyprogram B is a
polyprogram bisimulation, because variable equivalence propagation may equate too much,
resulting in π′i(B) not being subpolyprograms of P .

5 Conclusion

In this paper we have introduced the notions of a polyprogram, a decomposed polypro-
gram and polyprogram bisimulation. Polyprograms are essentially systems of equations from
the Burstall-Darlington framework [2]. Decomposed polyprograms are closer to AST and
need transformation rules formulated in a different style. Decomposed polyprograms can be
used to implement equality saturation for functional languages [7,4], which indicates that
equality saturation may be seen as another instance of the Burstall-Darlington framework.

Our definition of polyprogram bisimulation is not relational and instead it is based on the
notion of a span, although it can be reformulated in relational form. It should be noted that
polyprogram bisimulation and LTS bisimulation are quite different since nondeterminism in
polyprograms is not related to nondeterminism in LTS. Polyprogram bisimulation is used
to implement merging by bisimulation, a generalization of the redefinition rule.

We have also presented a bisimulation enumeration algorithm which enumerates polypro-
gram bisimulations of a specific form. This algorithm is related to finding intersection of two
languages of term equalities [3]. It is also structurally very similar to supercompilation [8].

This work was supported by the Russian Foundation for Basic Research, Grant N 18-31-
00412.
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On Safety of Unary and Non-Unary Inflationary Fixed
Point Operators
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Abstract. We investigate unary inflationary fixed point (IFP) operators and estab-
lish some differences between the unary IFP-operators and general ones.

1 Introduction

The modern SQL language (see [8]) supports first order features (see [1]), and some
extensions. For example, recursive queries correspond exactly to inflationary fixed point
(IFP) operators (see [5]). Also SQL allows to use universe functions and relations so we have
a finite structure (database tables) embedded into an infinite universe (see [6]).

But if recursive queries contain universe functions and relations then its execution can
fall into an infinite loop. This distinguishes recursive queries from traditional ones when
any query can be calculated after finitely many steps. Such queries are called safe, and the
property is called safety. Really the infinitely growing successor function allows to model
any algorithm. Hence unsafe queries exist for very simple universes.

In [2] we introduced a class of universes where unsafe queries are impossible and any
IFP-operator can be calculated in finitely many steps. Such universes are called safe.

In previous investigations we have established some properties of the safety. In [4] we
propose a necessary and sufficient condition for the universe safety. Since this condition
contains only first order properties, we obtain that the safety is also a property of complete
theories. In [3] we demonstrate that the safety of all unnested IFP-queries implies the safety
of the universe.

The proofs of these results include IFP-operators of arbitrary arities. But a well-known
feature of first order logic is that a unary variant of something may differ from a general
one. Here we establish some properties of unary IFP-operators and show that both previ-
ous results don’t hold for them: safety of the same unary IFP-operator maybe different in
elementary equivalent structures, and nested unary IFP-operators can be unsafe unless all
unnested ones are safe. Our example also demonstrates that binary unnested IFP-operators
can be unsafe even when all unary unnested IFP-operators are safe. Therefore the arity of
IFP-operators is essential for the safety.

2 Definitions

We consider the expansion of first order (FO) logic by inflationary fixed point (IFP)
operators.

Definition 1 (see [5]). Formulas of IFP-logic are constructed in the same way as FO-
formulas (see [7]) and by IFP-operators: if φ(x̄, ȳ) is a formula with free variables x̄, ȳ and
φ contains a new relation symbol Q then IFPQ(x̄)(φ) is a formula of old language with free
variables x̄, ȳ. Here the arity of Q must be equal to the length of x̄, it is an arity of the
IFP-operator.



Evaluations of terms, atomic formulas, boolean operations and quantifiers are defined
similar to FO-logic (see [7]).

Definition 2 (see [5]). Let A be a structure, φ(x̄, ȳ) be a formula, semantic of φ be already
defined, and φ contain a new relation symbol Q. Let ā ∈ A be values for ȳ. Then the value
of the formula IFPQ(x̄)(φ) is defined the next way. Let

Qā0 = ∅; Qāi+1 = Qāi ∪ {b̄ ∈ |A| : (A, Qāi ) |= φ(b̄, ā)},

for all i ∈ ω.
Let Qān = Qān+1 for some natural n and b̄ be values for x̄. In this case the formula

IFPQ(x̄)(φ)(x̄, ā) is true if b̄ ∈ Qān, and it is false if b̄ /∈ Qān. If there isn’t such natural n then
the value of IFPQ(x̄)(φ) is undefined.

If the value of IFPQ(x̄)(φ)(x̄, ā) is defined for all ā ∈ A then the operator IFPQ(x̄)(φ) is
called safe in A. The structure A is called safe if all IFP-operators are safe in A.

Easy to see that for each natural i the formula Qāi (x̄) is equivalent to the next formula
ψi(x̄, ā) correspondingly:

ψ0 ≡ [false]; ψi+1 ≡
[
ψi ∨ (φ)

Q(t̄)
ψi(t̄,ā)

]
. (1)

Here the formula (φ)
Q(t̄)
ψi(t̄,ā) is obtained from φ by replacing every subformula of kind Q(t̄)

with ψi(t̄, ā).

3 Main result

We consider a logic language containing two unary functional symbols s and d which
mean the next and the previous item correspondingly. Our theory T of this language has an
axiom

(∀x)(s(d(x)) = x ∧ d(s(x)) = x)

and for every natural n > 0 two axioms of the form

(∃x)

(
sn(x) = x ∧

∧
0<i<n

si(x) 6= x

)
︸ ︷︷ ︸

φn(x)

;

(∀x)(∀y)

(
φn(x) ∧ φn(y)→

∨
0≤i<n

y = si(x)

)
.

Here si(x) means
s(s(· · · s(︸ ︷︷ ︸
i times

x) · · · )),

in particular s0(x) = x. Hence any model of T contains a unique “cycle” of length n for each
natural n > 0. Let us call this cycle “n-cycle”. The formula φn(x) says that x belongs to the
n-cycle. Hence we can expand T by definable unary relations Rn: Rn(x) ≡ φn(x).

Theorem 1. The theory T admits quantifier elimination.
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Proof. As usual (see [7]) it is enough to eliminate an existential quantifier from any formula
of the form (∃u)θ where θ is a quantifier-free elementary conjunction.

In this proof we simplify formulas writing u + n or u − n instead of sn(u) or dn(u)
correspondingly. Then we have the equality (u + n) + m = u + (n + m) for any integers n
and m. Also easy to see that the equality u+n = t is equivalent to u = t−n and Rm(u+n)
is equivalent to Rm(u). Then we can suppose that all atomic formulas in θ are of types
u = u+ n, u = t, or Rn(u) where t doesn’t contain u.

Let us note that u = u+ n is equivalent to the disjunction∨
d|n

Rd(u),

where d|n means divisibility. Hence the equalities u = u + n can be replaced with the
corresponding disjunction of Rd(u).

Now we can suppose that the formula (∃u)θ has the following form:

(∃u)θ ≡ (∃u)

(∧
j

Rnj
(u) ∧

∧
j

¬Rmj
(u) ∧

∧
k

u = tk ∧
∧
`

u 6= r`

)
, (2)

where all tk and r` don’t contain u.
If at least one equality u = tk presents in (2) then the quantifier can be eliminated by

replacing u with tk: (∃u)θ ≡ (θ)utk . In the following we suppose that there is no equality
u = tk in (2).

All Rnj
(u) in (2) for different nj are not pairwise compatible hence Rn(u) must be unique

in (2) or absent at all. For the same reasons if Rn(u) presents in (2) then all ¬Rmj
(u) are

implied for mj 6= n. Thus we have three cases for the formula (2): it (a) contains a unique
Rn(u) and doesn’t contain any ¬Rmj (u), or (b) doesn’t contain Rn(u) and contains some
¬Rmj (u), or (c) doesn’t contain both.

In the case (b) we have the formula

(∃u)θ ≡ (∃u)

(∧
j

¬Rmj (u) ∧
∧
`

u 6= r`

)
. (3)

Let us suppose that every r` belongs to the corresponding q`-cycle. Because there are n-
cycles for all positive n then we can select a natural n such that n 6= mj and n 6= q` for all
j, `. Since each item u of this n-cycle satisfies ¬Rmj

(u) and u 6= r` thus the formula (3) is
true.

The case (c) is a partial case of (b) and we can use the same reasoning.
In the case (a) we have the formula of the form

(∃u)θ ≡ (∃u)

(
Rn(u) ∧

∧
`

u 6= r`

)
. (4)

Let us add to (4) the true disjunctions (Rn(r`) ∨ ¬Rn(r`)) for all `, and construct the
disjunctive normal form. Now we have a disjunction of formulas

(∃u)

(
Rn(u) ∧

∧
`

u 6= r`

)
∧
∧
`

R∗n(r`),

where R∗n(r`) is Rn(r`) or ¬Rn(r`). From Rn(u) and ¬Rn(r`) it follows that u 6= r`. Hence
we can exclude the inequality u 6= r` when ¬Rn(r`) presents. So we have

(∃u)

(
Rn(u) ∧

∧
`′

u 6= r`′

)
∧
∧
`′

Rn(r`′) ∧
∧
`′′

¬Rn(r`′′) (5)
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where `′ 6= `′′ for all `′ and `′′.
If there is no inequality in (5) then (5) is obviously equivalent the following quantifier-free

formula ∧
`′

Rn(r`′) ∧
∧
`′′

¬Rn(r`′′)

because (∃u)Rn(u) is true.
In the other case there is at least u 6= r1 in (5). Then the formula (5) is true if and only

if the n-cycle contains items except r`′ . Hence (5) is equivalent to( L∨
i=1

∧
`′

(
Rn(r`′) ∧ r1 + i 6= r`′

))
∧
∧
`′′

¬Rn(r`′′) (6)

where L is a number of `′ if its amount is less than n or L = n− 1 otherwise. If n = 1 then
the empty disjunction is false.

Now we have considered all possible cases for the formula (2) and have eliminated the
quantifiers in all cases. Therefore the theory T admits quantifier elimination.

Because the language of theory T has no constant so

Corollary 1. The theory T is complete.

Let a formula φ contain atomic formulas of the form Rnu
(u) and v = u+ku,v for integers

nu and ku,v, ȳ be some fixed variables which are free in φ. Then ȳ-weight of φ (denote it as
wȳ(φ)) is the maximal of all such nu and ku,v when u and v are not in ȳ.

Corollary 2. In the proof of theorem 1 we have wȳ(θ′) ≤ 2wȳ(θ) where θ′ is a result of
quantifier elimination in (∃x)θ.

Proof. Weight grows in substitution (θ)utk and in (6) but no more than twice.

An atomic model A0 of T contains the unique n-cycle for every n > 0 and nothing more.

Theorem 2. For any FO-formula φ(x, ȳ) (with a new unary predicate Q) the unary operator
IFPQ(x)(φ) is safe in A0.

Proof. Let the formula φ contain q quantifiers, and in the tuple ȳ every yj belong to the
corresponding mj-cycle. Let us select such natural w that mj ≤ w for all j and wȳ(φ) ≤ w.

Consider a sequence of formulas ψi(x, ȳ) defined as (1). Let us prove that all formulas
ψi(x, ȳ) are equivalent quantifier-free ones of ȳ-weight 2qw or less. For i = 1 it follows imme-
diately from theorem 1 and corollary 2. Let the formula ψi(x, ȳ) be a boolean combination
of Rm(x) and x = yj + kj where n ≤ 2qw. When we substitute ψi(t, ȳ) instead of Q(t) in
φ we obtain new subformulas of the form Rm(u) and u = yj + k′j . Hence we can’t obtain
new formulas u = u + n and new Rd(u) when u is not in ȳ. We can’t increase weight in
the substitution (θ)uy+k′j

. And we can’t increase L (amount of `′) in (6) unless n = mj for
some mj . But in the last case L < mj ≤ w. Therefore after quantifier elimination ψi+1 is of
weight no more than 2qw.

Thus every ψi(x, ȳ) is a boolean combination of Rn(x) and x = yj + kj where n ≤ 2qw.
Since y + mj = y so we can suppose that kj < mj for all j. But there are finitely many
pairwise non-equivalent formulas of such form. Hence ψi ≡ ψi+1 for some i and the operator
IFPQ(x)(φ) is safe.

The previous claim doesn’t hold for binary IFP-operators.
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Theorem 3. The binary operator

IFPQ(x,y)(x = y ∨Q(x, d(y)))

is not safe in A0.

Proof. The set Qi contains pairs (a, a + i), i = 0, . . . , i − 1. If a belongs to the n + 1-cycle
then (a, a+ i) ∈ Qi+1 \Qi. Hence Qi grows infinitely and the IFP-operator is undefined.

Also the safety doesn’t hold for nested unary IFP-operators.

Theorem 4. There is a nested unary IFP-operator that is not safe in A0.

Proof. Let us consider the following formula φ(y, z, x):

IFPQ(x)(x = y ∨ x = z ∨Q(d(x))∧
∧ (∃x1, x2)(x1 6= x2 ∧ ¬Q(x1) ∧Q(d(x1)) ∧ ¬Q(x2) ∧Q(d(x2)))).

Let a and b be values for y and z correspondingly. Here we add a and b to Qa,b1 and then add
at least two items to Qa,bi+1 for each i. This process stops when one of cycles (a, s(a), s2(a), . . . )
or (b, s(b), s2(b), . . . ) ends. Hence φ(y, z, x) means that for some m all si(y) and si(z) are
pairwise different, i = 0, . . . ,m, and x = sm(y) or x = sm(z). If these cycles are different
then the predecessor of a or of b is not in Qa,b and the corresponding cycle is longer than
other.

Hence the formula
θ(y, z) ≡ [y 6= z ∧ φ(y, z, d(y))]

means that the cycle of y is shorter than one of z. So we have a pre-order and the factor-
order is isomorphic to the set of naturals. Then we can define the predecessor function D
for cycles:

[D(z) = y] ≡ [θ(y, z) ∧ ¬(∃u)(θ(y, u) ∧ θ(u, z))].
Therefore the operator IFPP (x)(x = s(x) ∨ P (D(x))) is unsafe.

The theory T has non-atomic models B, which must contain both side infinite “lines”.
Unary IFP-operators can be unsafe in B.

Theorem 5. The unary operator IFPQ(x)(x = y ∨Q(d(x))) is unsafe in B.

Proof. If a value a of y belongs to an infinite “line” then Qai contains a+j for j = 0, . . . , i−1.
Hence there is no natural i such that Qai = Qai+1.

4 Conclusion

We have proved that properties of unary IFP-operators distinguish from properties of
arbitrary IFP-operators. All unary IFP-operators can be safe unless binary ones are not,
all unnested unary IFP-operators can be safe unless nested ones are not, and unary IFP-
operators can be safe in some structure but unsafe in another elementary equivalent one.

We are interested in the following questions:

– is there a structure where all binary IFP-operators are safe but ternary ones are not;
– is there a complete theory T such that all unary IFP-operators are safe in all T models,

but binary ones are not.

Answers help construct more reliable database queries.

49



References

1. Codd E.F. Relational completeness of data base sublanguages. Database Systems (ed. Rustin
R.), Prentice-Hall, (1972), 33–64.

2. Dudakov S.M. On safety of recursive queries. Vestnik TvGU. Seriya: Prikladnaya matematika,
4, (2012), 71–80, [Russian].

3. Dudakov S.M. On safety of IFP-operators and recursive queries. Vestnik TvGU. Seriya: Prik-
ladnaya matematika, 2, (2013), 5–13, [Russian].

4. Dudakov S.M. On inflationary fix-point operators safety. Lobachevskii J. Math., 36(4), (2015),
328–331.

5. Gurevich Y., Shelah S. Fixed-point extensions of first-order logic. Annals of Pure and Applied
Logic, 32, (1986), 265–280.

6. Kanellakis P., Kuper G., Revesz P. Constraint query languages. J. of computer and system
sciences, 51, (1995), 26–52.

7. Marker D. Model theory: an introduction. New York: Springer-Verlag, 2002.
8. ISO/IEC 9075-2:2016: Information technology — Database languages — SQL — Part 2: Foun-

dation (SQL/Foundation) International Organization for Standardization, Geneva, Switzerland.
https://webstore.iec.ch/preview/info_isoiec9075-2{ed5.0}en.pdf

50
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Abstract. This work represents the further development of definite iteration ver-
ification [9,10]. It extends the mixed axiomatic semantics method [1] suggested for
C-light program verification. This extension includes a verification method for defi-
nite iteration over changeable arrays possibly with loop exit in C-light programs. The
method includes an inference rule for the iteration without invariants. This rule was
implemented in verification conditions generator. An example which illustrates the
application of this methods is considered.

1 Introduction

C program verification is an urgent problem at the present time. Some projects (e. g.
[2,4]) suggests different solutions. But none of them contains any methods for automatic
verification of loop-containing programs without invariants. As it is known, in order to
verify loops the user has to provide invariants whose construction is a challenge. Tuerk [13]
suggested to use pre- and post-conditions for while-loops but the user still has to construct
them himself.

We consider loops with certain restrictions [12]. We extend our mixed axiomatic seman-
tics of the C-light language[1] with a rule for verification of such loops based on replacement
operation [12]. The special verification conditions are generated with the help of this rule.

In our paper [10] we considered:

1. Program verification over unchangeable arrays with a loop exit.
2. The recursive algorithm for replacement operation construction.
3. The strategy of interactive proving of verification conditions.

During our research two goals appeared: to consider changeable data structures and to
develop automated proof methods. This paper represents our results in this area:

1. Program verification over changeable arrays with a loop exit.
2. The recursive algorithm for replacement operation construction for such programs.
3. The strategy of automation of verification conditions proving.

Note that at proof stage we use the proof assistant ACL2[6] instead of SMT-solver as it
was previously. This led to new algorithm for replacement operation construction.

? This author is partially supported by RFBR grant 17-01-00789.



2 Definite Iteration over Changeable Data Structures and
Replacement Operation

The method of loop invariants elimination for definite iteration was suggested in [12]. It
includes four cases:

1. Definite iteration over unchangeable data structures without loop exits.
2. Definite iteration over unchangeable data structures with a loop exit.
3. Definite iteration over changeable data structures with / without a loop exit.
4. Definite iteration over hierarchical data structures with a loop exit.

The first case was considered in [9], the second case could be found in [10]. This paper
deals with the third case.

Let us remind the notion of data structures which contain a finite number of elements.
Let memb(S) be the multiset of elements of the structure S and |memb(S)| be the power of
the multiset memb(S). For the structure S the following operations are defined:

1. empty(S) = true iff |memb(S)| = 0.
2. choo(S) returns an element of memb(S) if ¬empty(S).
3. rest(S) = S′, where S′ is a structure of the type of S and memb(S′) = memb(S) \
{choo(S)} if ¬empty(S).

Sets, sequences, lists, strings, arrays, files and trees are typical examples of the data
structures.

Let ¬empty(S), then vec(S) = [s1, s2, . . . , sn] where memb(S) = {s1, s2, . . . ,
sn} and si = choo(resti−1(S)) for i = 1, 2, . . . , n.

Consider the statement

for x in S do v := body(v,x) end

where S is a structure, x is the variable of the type “an element S”, v is a vector of loop
variables which does not contain x and body represents the loop body computation, which
does not modify x and which terminates for each x ∈ memb(S). The structure S can be
modified as described below. The loop body can contain only the assignment statements,
the if statements, possibly nested, and the break statements. Such for statement is named
a definite iteration.

The operational semantics of such statement is defined as follows. Let v0 be the vector
of initial values of variables from v. If empty(S) then the result of the iteration v = v0.
Otherwise, if vec(S) = [s1, s2, . . . , sn], then the loop body iterates sequentially for x taking
the values s1, s2, . . . , sn, and body(v, sj) can modify s1, s2, . . . , sj−1.

To express the effect of the iteration let us define a replacement operation
rep(v, S, body, n), where rep(v, S, body, 0) = v, rep(v, S, body, i) = body(rep(v, S,
body, i− 1), si) for all i = 1, 2, . . . , n if ¬empty(S).

A number of theorems, which express important properties of the replacement operation,
were proved in [12].

The inference rule for definite iterations has the form:

E,SP ` {P}A;{Q(v ← rep(v, S, body))}
E,SP ` {P}A; for x in S do v := body(v,x) end{Q}

Here A are program statements before the loop. We use backward tracing: we move from
the program end to its beginning and eliminate the rightmost operator (at the top level)
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applying the corresponding rule of the mixed axiomatic semantics [1] of C-light. E is the
environment which contains an information about current function (its identifier, type and
body) which is verified, an information about current block and label identifier if goto
statement occurred earlier. SP is program specification which includes all pre-conditions,
post-conditions, and invariants of loops and labeled statements.

3 The Algorithm of Generation of rep Function

Let S be a one-dimensional array of n elements. Consider the special case of definite
iteration

for (i = 0; i < n; i + +) v := body(v, i) end

where v := body(v, i) consists of assignment statements, if statements (possibly nested)
and break statements.

In order to generate verification conditions we have to determine v, body(v, i), and the
function rep.

Let the loop body has the form

{x1 = expr1(x1,x2, . . . ,xk);
x2 = expr2(x1,x2, . . . ,xk);

. . .
xk = exprk(x1,x2, . . . ,xk); }

where exprj(j = 1, 2, . . . k) are some C-light expressions.
The vector v of loop variables consists of all variables from left-hand sides of assignment

statements: v = (x1, x2, . . . , xk) including S[i], i = 1, 2, . . . , n. From the statements before
the loop, we can get the initial value of v.

Let generate_rep be the function which generates rep, including all auxiliary functions
and data structures. The variables from v are simulated by the data structure of the type
frame (see app. A[8]) whose definition is generated by the function generate_frame. The
execution of generate_rep starts with generate_frame call.

The function frame_init receives the values of v and returns the structure of the type
frame whose fields coincide with the arguments of frame_init. Therefore, frame_init
could be considered as constructor in terms of C++ language. The macro make − frame
allows to specify the function frame_init.

The definition of the function frame_init is generated by the function
generate_frame_init. After generate_frame call the execution of the function
generate_rep continues with generate_frame_init call. An example of work of these
functions can be found in app. A[8].

The first argument of rep is the iteration number. In verification condition it is always
equal to n. The second argument is data structure fr of the type frame. In verification
condition it is always equal to frame_init, which creates the structure of the type frame,
whose fields coincide with the initial values of v and of the other unchangeable variables
and data structures. Such rep call returns the structure of the type frame, whose fields
(except for break statement) coincide with the v after a number of iterations given by the
first argument. Note that rep is defined recursively. If its first argument is equal to 0 then
rep returns the structure of the type frame, whose fields coincide with the initial values of v.

Let a loop exit occurs for some i such that 0 < i ≤ n, then we define rep that for all j
such that i ≤ j ≤ n:
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rep(i, frame_init(x10, x20, . . . , xk0)) = rep(j, frame_init(x10, x20, . . . , xk0))

It means that iterations is continued but v is not changed for i > j. In such case the
field loop− break is introduced into the data structure of the type frame. This field is true
if and only if a loop exit occurred in previous iterations.

The body of rep can be defined in ACL2 by the construct b∗ (see app. B[8]) when i > 0.
Consider rep(i−1, fr): a new variable fr of the type frame is created, whose value is a result
of such recursive call. Using the construct when we check the validity of fr.loop − break
because if a loop exit occurred in previous iterations then body statements are not executed
on this iteration and returning value is the structure fr. Then the constructs corresponding
to loop body statements follow. Finally, the value of b∗ (so the returning value of rep) is
equal to fr.

The function generate_rep_one generates the definition of rep as described above. In
order to define the constructs corresponding to loop body the function generate_rep_one
calls the function generate_rep_body. The function generate_rep_one is called inside
generate_rep after generate_frame and generate_frame_init calls.

The definition of generate_rep_one in pseudocode similar to C++ language see in app.
C[8]. The function generate_rep_body has the following form:

string generate_rep_body(list<instruction> instructions) {
string result = "(b*\n(";
for (instruction i = instructions.begin();

i! = instructions.end(); i++) {
if (is_if_expression(i)) {

result += "(fr\n(if\n";
result += generate_expression(get_condition(i));
result += "\n";
result += generate_rep_body(get_true_branch(i));
result += generate_rep_body(get_false_branch(i));
result += "))\n((when (frame->loop-break fr)) fr)\n";}

else if (is_assignment_expression(i)) {
result += "(fr (change-frame fr :" + get_lvalue(i) +

" " + generate_expression(get_rvalue(i)) + "))\n";}
else if (is_break_instruction(i)) {
result += "(fr (change-frame fr :loop-break t))\n"; break;}}

return result + ")\nfr)\n";}

The description of used constructs see in app. D[8].
This pseudocode was simplified in order to clarify our algorithm. In real implementa-

tion there are some additional error checks. Our pseudocode recursively translates C-light
statements to ACL2 language (i. e. a dialect of LISP).

We apply such translation to list of C-light statements. Therefore the body of a loop
under consideration is the argument of the function generate_rep_body. Note that it is
necessary to define the translation for all statements of definite iteration of a special form.
For example, to translate if statement the function generate_rep_body is called recursively
for then-branch and for else-branch. The execution of any branch can lead to break state-
ment. Therefore, in the body of the function generate_rep_body the construction when is
generated, which checks whether the execution of if statement led to loop exit. Thus, the us-
ing of special ACL2 constructions (such as b∗ and when) allowed to simplify the translation
of C-light statements to ACL2 language.
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4 Strategy of Automatic Verification Conditions Proving in ACL2

Inductive proofs appear in our verification method. Although ACL2 supports induction,
we are confronted with difficulties during our experiments. We suggest heuristic method
which allows us to prove successfully the partial correctness of a number of examples con-
taining definite iteration over changeable arrays with / without loop exit.

The idea is to check the assumption that program post-condition describes the cases
whether a loop exit occurred or not in a form of implications conjunction. ACL2 is able
to check the validity of such assumption. If it is true it can help to define more precisely
the cases in post-condition. Proving all detailed cases can help to prove the verification
condition.

The input of the algorithm is the verification condition φ, the variable n, the definition
of rep, underlying theory and post-condition.

The output of the algorithm is «φ is true» or «unknown».
The method has the form:

1. Let M be a tuple of implications from post-condition. Consider the tuple N such that
the i-th element of N is the premise of the i-th element of M . Go to the step 2.

2. For each element of N execute step 3. If result is true, add to the theory a lemma which
is a conjunction of φ and an equality of the i-th element of N and rep(. . .).loop− break.
Otherwise go to the step 4. If result is true, add to the theory a lemma which is a
conjunction of φ and an equality of the i-th element of N and ¬rep(. . .).loop− break.
Go to the step 5.

3. Let θ be the i-th element of N . Let ω be the conjunction of φ and an equality of θ and
rep(. . .).loop − break. Check the validity of ω in ACL2. If ω was proved then return
«true» otherwise return «false».

4. Let θ be the i-th element of N . Let ω be the conjunction of φ and an equality of θ and
¬rep(. . .).loop − break. Check the validity of ω in ACL2. If ω was proved then return
«true» otherwise return «false».

5. Check the validity of φ in ACL2 using obtained lemmas. If φ was proved then return «φ
is true», otherwise return «unknown».

This method can be generalized for using with another interactive provers and SMT-
solvers (for example CVC4 and Z3).

5 Example

Let us demonstrate the application of our methods. Consider the following function
negate_first[5]. For given array of integers a it changes the sign of its first negative element.

void negate_first(int n, int* a) {
int i;
for (i = 0; i < n; i++) {

if (a[i] < 0) {a[i] = -a[i]; break;}}}

In ACL2 we represent arrays as lists. The pre-condition has the form:

(and (integer-listp a) (integer-listp a_0) (equal a a_0)
(integerp n) (< 0 n) (<= n (length a_0)))

The post-condition has the form:
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(let (((mv found-spec index-spec) (count_index n a_0)))
(implies (not found-spec) (equal a a_0))
(implies found-spec (equal a

(update-nth index-spec (- (nth index-spec a_0)) a_0)))))))

The definition of count_index see in app. E[8]. It returns a pair: the first component is
true if and only if a has negative elements. In such case the second component is the index
of negative element.

The data structure of the type frame, recursive definition of the function rep and the
verification condition, based on replacement operation, was generated using the method
described in 3. The verification condition my-theorem1 (see in app. F [8]) is a conjunction
of two cases: whether the array has no negative elements or it has a negative element. Note
that the function post-condition is also based on these cases. Thus, the heuristic method
from 4 was applied. Finally, the lemma about the equivalence of the statement about loop
exit and the statement about existence of negative element in array was generated. The
corresponding extensions of the underlying theory see in app. F [8]. ACL2 allowed to prove
successfully the verification condition in obtained theory.

6 Conclusion

This paper represents an extension of the system for C-light program verification [11].
In the case of definite iteration over changeable arrays with loop exit this extension allows
to generate verification conditions without loop invariants.

This generation is based on the inference rule for the C-light for statement which uses
replacement operation. It expresses definite iteration in special form. The replacement op-
eration is generated automatically by a special algorithm.

Obtained verification conditions are automatically proved in ACL2 with the help of
suggested heuristic method.

Note that the verification of the functions implementing BLAS interface [3] is an impor-
tant problem. Earlier we performed such experiments successfully [7]. Our methods allowed
us to verify the function asum which implements the corresponding function from BLAS
interface: it calculates the sum of absolute values of a vector.

The next step in our work will be the case of more complicated data structures and the
verification of another functions of BLAS.
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Abstract. This paper presents the ontology of concurrent systems. This ontology is
the part of the intellectual system for supporting verification of concurrent systems.
The ontological representation of these systems is oriented both to applying formal
verification methods and to extracting information from technical documentation.
We describe the ontology classes and domains that define concurrent processes. Their
formal semantics is given as a labelled transition system. We specialize several types
of processes from the subject domain of automatic control systems. The concepts of
ontology are illustrated by the example of a control part for a bottle-filling system.

1 Introduction

Our long-term goal is a comprehensive approach to extracting formal models and proper-
ties of concurrent systems from the texts of technical documentation, with their verification,
i.e. ensuring the quality of a system using formal methods. For formal verification, we rely
on the well-proven model checking and deductive methods. The drawback of the current
systems for supporting the development and verification of requirements is that they offer
only manual formulation of requirements and systems [2,11,14,15].

Our intellectual system being developed for supporting formal verification of concurrent
system will automatically extract and generate both concurrent system and requirements
for it. In this paper, we suggest an ontology of concurrent system. Another key component of
the system is the ontology of specification patterns proposed in [6]. The content of these on-
tologies, i.e. the sets of their class instances, are ontological descriptions of some concurrent
system and requirements for it. These descriptions are extracted from corpus of technical
documentation by our system of information extraction from natural language text [3,4,5].
The description set of requirements can also be extended with descriptions of typical correct-
ness requirements, automatically generated from the ontological description of the system.
These descriptions of the system and requirements are the basis for formal verification of
the concurrent system. To verify a system, it is necessary first to choose a suitable verifier
(model checker) taking into account the formal semantics of the ontology-based requirement
presentation. If it exists, we translate the ontological description of the system into the model
specification input language of the verifier, and the requirements’ description is translated
into the property specification input language of the verifier (usually, this language is some
temporal logic). If suitable verifier does not exist it is reasonable to develop a special spec-
ification patterns verifier based on the patterns’ formal semantics which uses the simplest
verification algorithms, if possible. If semantics of ontological representations of the system
model and requirements, as well as the input language of a verification tool are strictly
defined, and translating these representations into the input data of the verifier is correct,
then the correctness of checking the requirements is guaranteed. Dealing with requirements
involves not only the formal semantics of specification patterns, but also the presentation
? The research has been supported by Russian Foundation for Basic Research (grant 17-07-01600).



of these patterns both in natural language and in graphical form. These representations are
especially important, because due to the ambiguity of the natural language, it is possible
that the extracted and generated requirements may not meet the engineer’ expectations, and
manual corrections may be required. The ontologies of concurrent systems and specification
patterns with their formal semantics are the basis for a long-term development of a system
for supporting formal verification. Our approach allow to model and verify a wide range of
systems: from software distributed systems to business processes. The main limitation of
the approach is the complexity, and often the impossibility to exactly extract information
from technical documentation, and the extracted models of systems and requirements may
require manual correction.

Our ontology of concurrent systems specifies a set of processes. Known approaches to
ontological process description usually solve modeling problems. The ontologies PSL [13],
Cyc [1], SBPM [7,8], and GFO [9] focus on tasks in the fields of production scheduling,
process planning, workflow management, business process reengineering, simulation, process
realization, process modelling, and project management. Taking into account the concepts of
domains in describing the manufacturing, engineering and business processes is an important
advantage of these approaches. Indicating the specific time and place of events and actions
associated with these processes in some of these approaches allows one to describe the
planning ontologies representing abstract and executable plans of organization of processes,
which is another advantage. However, these advantages make verification of the logic of the
processes underlying these ontologies very difficult. The intertwining of domain concepts
with the logic of processes results in complication of extracting the latter for use in model-
checking based verification systems. Moreover, the extracted logic still needs to be translated
into the language of the verification system, based, as a rule, on transition systems that
operate with the concepts of state and transition. In particular, for planning ontologies,
the specific time and place of events and actions must be expressed in terms of states. In
addition, these ontologies do not have a formal semantics for the logic of processes, which
further complicates the task.

In this paper, we define the ontology classes and domains that characterize concurrent
systems in general. We give the formal semantics of these classes including the operational
semantics of system process actions. A syntax of ontology representation languages, in par-
ticular language OWL, is declarative, but the strictly defined operational semantics of our
ontology allows to easily translate the representation of the process model into the input
languages of verification tools, in particular SPIN [10]. On the way to deal with practi-
cal concurrent systems, we describe the particular method of using our general concurrent
system ontology for specifying components of automatic control systems.

2 The Ontology

We consider an ontology as a structure, which includes the following elements: (1) a finite
non-empty set of classes, (2) a finite non-empty set of data attributes and relation attributes,
and (3) a finite non-empty set of domains of data attributes. Each class is defined by a set
of attributes. Data attributes take values from domains, and relation attributes’ values are
instances of classes. An instance of a class is defined by a set of attribute values for this class.
Information content of an ontology is a set of instances of its classes. The ontology population
problem is to extract the information content of this ontology from input data. In our case,
the input data for populating the ontology of concurrent systems is technical documentation.
To populate this ontology, we use our system of semantic information extraction from natural
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language texts [3]. Note that some attribute values of extracted ontology instances may be
not determined.

Our ontology is intended for an ontological description of a concurrent system using
a set of instances. We consider a concurrent system as a set of sequential communicating
processes. Processes (described by the class Process) are characterized by sets of local and
shared variables; a list of actions on these variables which change their values; a list of
channels for the process communication; and a list of communication actions for sending
messages. The process variables (the class Variable) take values of the basic types (Booleans,
finite subsets of integers or strings for enumeration types). Initial conditions of the variable
values can be defined by comparison with constants. The actions of the processes (the class
Action) include the base operations over the basic types. The enable of each action depends
on the guard conditions (the class Condition) for the variable values and the content of the
sent messages. The processes can send messages through channels (the class Channel) under
the guard conditions (the class Condition). The communication channels are characterized
by the type of reading messages, capacity, ways of writing and reading, and reliability. At
Figure 1, classes are presented by white ovals. Relations between classes are shown as dashed
arrows with names in grey ovals. These arrows are solid if the relation is one-to-many, and
dotted, if the relation is one-to-one. Class data attributes placed in dash-dot rectangles are
connected with their classes by dash-dot arrows. In the following sections, we give a formal
semantics of the classes and domains of our ontology.

Fig. 1. The ontology of concurrent systems.

3 The Semantics

We consider a concurrent system which is a set of sequential processes communicating via
shared variables and bounded channels. The values of the shared and local process variables
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determine a local state of the process. Depending on the subject area, we detect the process
communication features (synchronous, asynchronous) and channel characteristics (FIFO,
LIFO, reliable, bounded, etc.). The channel states are specified by the set of messages stored
in it.

The ontological description OS of the concurrent system S is the set of ontology in-
stances which represent the process, channels and other elements of the system S. We de-
fine the formal semantics for OS using the standard model of labeled transition systems
MS = (DS , D

0
S , TS , ActS), where DS is a finite nonempty set of states, D0

S is a nonempty
set of initial states, TS âĂŞ a transition relation between states, ActS is the finite set of
transition labels that describe the actions of the system. The model semantics of the onto-
logical description OS is a function that maps the values of the instance attributes to the
elements of the labelled transition system Sem : OS −→ El(MS).

Let us describe the set El(MS). Let the concurrent system S contain a finite set PS of the
processes and a finite set CS of bounded channels. Let Domains = {Integer, Bool, String}
be finite version of the standard basic types for variable values with the standard type cast.
For the process P ∈ PS , we denote the following sets: the local variables LP , the shared
variables UP , all variables VP = LP ∪UP , the actions AP , the channels CP , communication
actions (com-actions) SP . The domain of the variable v ∈ VP is V al(TP (v)) ⊆ Values
for some basic type TP (v) ∈ Domains. Let LS be the set of all local variables of processes
from PS , US be the set of all shared variables of processes from PS , and the valuation
function V : LS ∪ US −→ 2Values represent the value of the variable. The local state of
the process P is a tuple of values of its variables: stP = (V (v1), ...V (vnV

)). Let stP (v) =
V (v) for v ∈ VP be the value of the variable v in the state stP . The initial states of
the process st0P = (V 0(v1), ...V 0(vnV

)) are defined by the initial values of its variables
V 0 : LS ∪ US −→ 2Values. The local state of the channel c is the ordered tuple of messages
stored in it: stc = (m1, ...,mnc

). Let stc(k) = mk for k ∈ [1..nc] be the content of the
k-th message of the channel c in the state stc. The initial state of all channels is an empty
set. The set of states DS of the LTS-system MS is the Cartesian product of the values of
local and shared process variables and channel states. The set of initial states D0

S is the
Cartesian product of the initial values of process variables and channel states. We state the
operational semantics of the system is the interleaving semantics, i.e. its state and the state
of its channels can be changed only by a single system process. Hence, the set of system
actions is ActS = ∪P∈SAP ∪ SP . Due to interleaving, the transition relation TS is defined
by the local operational semantics of the particular process instances P ∈ SP described in
the following sections.

Further, for every class, the attribute Name ∈ String specifies the name of the class
instance.

The class Process describes the system processes with the following attributes.
- ProcType: {sensor, valve ...}∈String contains the process specifier.
- Local∗: V ariable lists the variables visible only within the process actions.
- Shared∗: V ariable lists the variables visible only for process that share them.
- Actions∗: Action lists the actions performed by the process on its variables.
- Channels∗: Channel lists the channels connecting the processes.
- ComActions∗: ComAction lists the sending message actions.
The value of any attributes of this class may not be specified. However, if Local and Shared
are not specified, then the Actions value is not specified. If the value of Channels is not
specified, the value of ComActions is not specified. Each instance of this class must have
Actions and/or ComActions to be specified.
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For the process P , the formal semantics of its ontological description Sem(P ) consists
of the formal semantics of its attributes: local variables Sem(P.Local), shared variables
Sem(P.Shared), actions Sem(P.Actions), communication actions Sem(P.ComActions),
and channels Sem(P.Channels). The process P can be unambiguously presented in MS

by these semantics. First, we define the following sets: LP = {l}l∈Local, UP = {u}u∈Shared,
AP = {a}a∈Actions, CP = {c}c∈Channels, SP = {s}s∈ComActions. In the next sections, we
give semantics of these attributes step by step.

The class Variable describes process variables by the following attributes.
- Type: Domains describes the type of a variable.
- Initial∗: IniCondition describes constraints on the initial value of the variable.
- Owner∗: Process refers to the processes having access to the variable.
The values of all attributes of this class, except Initial, must be specified.

The semantics of the variable v of the process P is defined as follows:
Sem(v.Name) ∈ String, Sem(v.Type) ∈ Domains, Sem(v.Owner) ⊆ SP . If
Sem(v.Owner) = {P}, then v ∈ LP . The semantics of the initial condition specifies the
set of initial values of the variable V 0(v):

– If v.Initial = ∅, then V 0(v) = {false} with v.Type = Bool, V 0(v) = {0} with
v.Type ∈Integer, V 0(v) = {′′ ′′} with v.Type ∈ String;

– if v.Initial 6= ∅, then V 0(v) = ∩ini∈v.InitialSem(ini).

The class IniCondition defines the initial values of variables by the attributes:
- IniConstant: {Constant, Values} defines a constant for the comparison.
- Operation: Compare= {<,>,=,≤,≥, 6=} defines the comparison actions.
The values of Const and Operation attributes must be specified.

The semantics of the initial condition ini of the variable v is a subset of the set of its
values: Sem(ini.Name) ∈ String and Sem(ini) = {val ∈ V al(v.Type) | val ◦ Sem(Const)
for ◦ ∈ {<,>,=,≤,≥, 6=}}, where Sem(Const) = Sem(cs) with cs ∈ Constant or
Sem(Const) = s with cs ∈ Values.

The class Constant describes constants, and contains the following attributes.
- Domain: Domains describes the type of a constant.
- Value: Values describes the value of a constant.
The values of all attributes must be defined.

The semantics of the constant cs is its value from the set of system possible values:
Sem(cs.Name) ∈ String, Sem(cs.Domain) ∈ Domains, Sem(cs.V alue) ∈Values, and
Sem(cs) = cs.V alue.

The class Channel describes the communication channels by the attributes:
- From: Process specifies the sender.
- To∗: Process specifies the recievers of messages from the channel. If there are several
recievers then the channel is broadcasting.
- Type: Order = {FIFO, LIFO, IndAc, Free} defines the order of reading from the chan-
nel, where IndAc means access by index and Free means random access.
- Capacity: Integer specifies the capacity of the channel.
- Reliable: Bool characterizes the external reliability of the channel in the sense that mes-
sages are not lost by external causes.
- Write∈WriteMode = {NSent, Old, New, Some} describes the writing mode when the
channel is full.

– NSent: the message is not written to the channel, i.e. is lost;
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– New: the message is written to the channel at the location of the message with the largest
index, which is deleted;

– Old: the message is written to the channel at the message location with index 1, which
is deleted;

– Some: the message is written to the channel in the place of some message that is deleted.

- Read∈ReadMode = {Del, Keep, Tail, Head, Some} specifies how to read from the chan-
nel.

– Del: the message is deleted from the channel after reading;
– Keep: the message is not deleted from the channel after reading;
– Tail: the message index after reading becomes the largest in the channel;
– Head: the index of the message after reading becomes 1;
– Some: after reading the message is moved to an arbitrary place in the channel.

The values of the From and To attributes must be defined. By default, i.e. if the corre-
sponding attribute is not defined then Type = FIFO, Capacity = 1, Write = NSent, Read
= Del, Reliable = true.

The semantics of the channel c of the process P is defined as follows:
Sem(c.Name) ∈ String, Sem(c.From) = P , and Sem(s.To) ⊆ SP . The semantics of the
local channel states and their changes are defined below in the descriptions of actions and
com-actions.

The class Action describes the actions performed by the processes.
- Who: Process refers to the process that performs this action.
- What: V ariable refers to a variable which may change as the action result.
- ToDo: Expression describes an expression whose value is assigned to the variable inWhat.
- When: Condition describes a Boolean formula that specifies the condition for performing
an action in the local state.
Attribute values ToDo and When can use only process variables and messages from its
channels. The values of the Who, What and ToDo attributes must be specified. If When is
not specified, this means that the action can be performed in any local state of the process.

The semantics of the action a of the process P is defined as follows.
Sem(a.Name) ∈ String, Sem(a.Who) = P , and Sem(a.What) ∈ VP . Let a.What = v
be the variable that have to be changed by the action a, and Ca ⊆ CP be the process
channels whose messages are read for the action. The transition relation between the local
states both of the process P and its channels is defined as follows. If the local states of the
process stP and stc of every channel c ∈ Ca are such that the condition a.When is satisfied
(Sem(a.When) = true) and the action expression a.ToDo has a meaning (Sem(a.ToDo) 6=
null), then after the action a, the new local states st′P of the process and its channels are such
that st′P (v) = Sem(a.ToDo) ∧ ∀x ∈ VP \ {v} : st′P (x) = stP (x) ∧ ∀y ∈ CP \ Ca : st′y = sty,
and the new state st′c of every channel c from Ca corresponds to the semantics of the
read operation for channels (see the next section). Note, that in the process of calculating
Sem(a.When) and Sem(a.ToDo), channel states do not change. If Sem(a.ToDo) = null or
Sem(a.When) 6= true, all states remains the same: st′P = stP and ∀c ∈ Ca : st′c = stc.

The class Expression describes expressions whose value is assigned to process variables
under actions, and contains the following attributes.
- The attributes Op1, Op2: {Expression, V ariable, Constant, Channel, Values} specify the
left and right operands of the expression.
- Operation: Operations= {+,−, ∗,%, >,<,≤,≥, 6=,¬,∧,∨,→} makes standard integer or
Boolean manipulations with the operands.
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The values of Op1 and Op2 must operate on variables and channel data available to the
process. The values of the Op1 and Operation attributes must be defined. If Op2 is not
defined, then the Operation value must be a unary operation.

Let for the action a of the process P in the state stP the action expression be a.ToDo = e.
The semantics of the expression is the value of a base type or null: Sem(e) ∈ Values∪null.

– For binary operations ◦ ∈ {+,−, ∗,%, >,<,≤,≥, 6=,∧,∨,→}: Sem(e) = Sem(e.Op1) ◦
Sem(e.Op2);

– For unary operations ◦ ∈ {−,¬}: Sem(e) = ◦Sem(e.Op1);
– Sem(e) = null iff Sem(e.Op1) = null or Sem(e.Op2) = null.

Let Op ∈ Op1, Op2. Sem(e.Op) is defined as follows:

– e.Op = e′ ∈ {Expression,Constant, Values}: Sem(e.Op) = Sem(e′);
– e.Op = w ∈ V ariable, w ∈ VP : Sem(e.Op) = stP (w);
– e.Op = c ∈ Channel, c ∈ Ca: Sem(e.Op) = V al, where
• If stc = ∅ then V al = null and st′c = stc;
• If c.Type = FIFO then V al = stc(1) and if c.Read is equal to
∗ Del then st′c = (m2, ...,mnc

);
∗ Keep then st′c = stc;
∗ Tail then st′c = (m2, ...,mnc

,m1);
∗ Head then st′c = stc;
∗ Free then st′c = (m2, ...,m1, ...,mnc).

The semantics for other types of reading are defined in the similar way.

The class Condition describes the guard condition for a process actions and com-actions.
Its description and semantics are almost the same as for the class Expression except that
the Condition uses just boolean operation and values.

The class ComAction describes the com-actions for sending messages, and contains the
following attributes.
- From: Process specifies the process that sends the message.
- To: Channel specifies a channel that delivers messages to a receiver.
- Message: Expression describes the message being sent.
- When: Conditions describes the guard condition for sending the message.
Note that our model of processes communication implements the receiving of messages when
necessary, i.e. reading from the channel is performed only when a process calculates the guard
conditions or the action expressions. Attribute values Message and When can use only the
process variables and messages from its channels. The values of the Message, From, and
To attributes must be defined. If When is not specified, this means that the com-action can
be performed in any local state of the process.

The semantics of sending action s of the process P in the state stP is defined as follows.
Sem(s.Name) ∈ String, Sem(s.From) = P , and Sem(s.To) ∈ CP . Let s.To = c be the
channel of the process for sending the message and its local state be stc = (m1, ...,mnc),
and Cs ⊆ CP are the process channels from which messages are read for the message. Let
Sem(s.Message) = Mes and Sem(s.When) = Cnd. The local operational semantics of
sending a message is defined as follows. The local states of the process P and the unused
channels do not change: st′P = stP and ∀cl ∈ CP \ (Cs ∪ {c}) : st′cl = stcl. If the local
states of P and the channels cs ∈ Cs are such that Mes = null or Cnd 6= true, then
∀c ∈ CP : st′c = stc. If the condition s.When is satisfied (Cnd = true) and the value of the
message is calculated (Mes 6= null), then after com-action s, the new state of the channels
st′cs for cs ∈ Cs corresponds to the semantics of the read operation defined above. The new
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local state st′c of the channel c depends on the capacity of the channel c.Capacity and the
method of writing to the channel c.Write as follows:

– If nc < c.Capacity, then st′ = (m1, ...,mnc
,Mes).

– When the channel is full, if c.Write is equal to
• NSent then ∀c ∈ CP : st′c = stc;
• Old then st′c = (Mes,m2, ...,mnc);
• New then st′c = (m1, ...,mnc−1,Mes);
• Some then st′c = (m1, ...,mi−1,Mes,mi+1, ...,mnc

), i ∈ [1..nc].

Knowing the local semantics of the actions and com-actions of every process, the transition
relation TS can be specified.

4 Ontological Modeling Functional Elements of the Automatic
Control System (ACS)

In this section, we represent the methodology of description for several basic functional
elements of the automatic control system using our ontology: sensors, comparators and
regulators, and represent an example of such a system.
A sensor detects events or changes in its environment (that is a part of the control ob-
ject) observing some environment parameter and sends the information to other elements
of ACS. The ontology process for a sensor has the following obligatory attributes. The at-
tribute Shared contains the variable ev that specifies the value of the observing environment
parameter. The attribute Channels describes the channels for sending information about
the parameter. The attribute ComActions contains the actions of sending these messages.
A comparator compares the value of its input parameter with some reference value (set-
point). The ontology process for a comparator has the following obligatory attributes. The
attribute ComActions contains the actions of sending messages with the result of comparing
the value of the input parameter with the setpoint. The Channels describes the channels
for sending this information.
A sensor with the comparison function combining the functions of a sensor and a
comparator is modelled by the composite process.
A regulator maintains a designated characteristic of the control object. It directly influ-
ences the state of the control object by changing the parameters of the control object in
accordance with the values of the input parameters of the regulator. Regulators are divided
into ontological classes, depending on the number of modes of their operation. The ontology
process for a regulator has the following obligatory attributes. The attribute Local contains
the variable mode that specifies the current mode of the regulator and takes the values in an
enumeration type consisting of n-th elements. The attribute Shared contains the variables
that describe the parameters of the control object of the regulator. The attribute Actions
contains the actions that change these parameters. The attribute ToDo of these actions
contains the expression that computes the new values of these parameters. This expression
depends on the value of the local variable mode and the messages with the values of the
input parameters.

To illustrate ACS modelling by this methodology, we present a subsystem of bottle-
filling system from [12] described in a natural language. We consider the following simplified
subsystem: the sensors “lower-level sensor” and “upper-level sensor” with the comparison
function are defined by the processes Pl and Pu, and the regulators “bottom valve” and
“inlet valve” are defined by the processes Pb and Pi. We suggest that all channels are FIFO-
type with capacity 1 and messages are removed after being read.
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The process for the lower-level sensor is Pl=(Type: sensor-comparator, Shared∗: {ev},
Channels∗: {li, lb}, ComActions∗: {lo, lc}). The variable ev specifies the current fluid level
information. It takes the Integer values frommin.V alue tomax.V alue where the constants
min and max defines the almost empty and overflow condition. The channels li and lb
connect the process-sensor Pl with the regulator processes Pi and Pb, respectively. The
com-action lo sends the message “toOpen” to the inlet regulator Pi when the almost empty
condition holds: lo = (From: Pl, To: li, Message : “toOpen”, When: ev ≤ min). The
com-action lc is symmetric.

The process for the inlet valve is Pi=(Type: regulator, Local∗: {mode}, Shared∗: {ev},
Actions∗: {inc, io, ic}, Channels∗: {li, ui}). The variable mode has the enumeration type
{“open”, “closed”}. The action inc increments the fluid level: inc = (Who: Pi, What: ev,
ToDo: ev + 1, When: mode = “open”). The action io opens the inlet valve: io = (Who: Pi,
What: mode, ToDo: “open”, When: li = “toOpen”). The closing action ic is symmetric. The
processes Pu and Pb are defined in the similar way.

5 Conclusion

This paper represents the ontology of concurrent systems. This ontology is the part of
the intellectual system for verification support. The system of information extraction from
technical documentation texts populates this ontology with instances of processes found in
the documents. Then, the translation module generates a representation of the system in
the input language of some verifier. To ensure the correctness of this generation, in this
paper, we define the formal semantics of our ontology by associating the labelled transition
system to a set of ontological process instances by formal rules. The formal semantics of the
ontological representation of processes, oriented to formal verification methods, distinguishes
our approach from the state-of-art approaches to definitions of process ontologies.

Further, we plan to develop a system of object-oriented ontological process patterns for
elements from various subject areas: automatic control systems, business processes, etc. As
part of constructing our intellectual system for verification support, we will also develop
a method of extracting typical system requirements from the ontological representation of
processes to populate the associated ontology requirements. In addition, it is reasonable
to produce a special verification tools using this ontology based on model checking and
deduction verification methods, and their combination.
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Abstract. In the paper we introduce a process model of security protocols, where
processes are graphs with edges labelled by actions, and present a new method of
specification and verification of security protocols based on this model.

1 Introduction

1.1 Security protocols and their properties

A security protocol (SP) is a distributed algorithm that determines an order of mes-
sage passing between several agents. Examples of such agents are computer systems, bank
cards, people, etc. Messages transmitted by SPs can be encrypted. We assume that en-
cryption transformations used in SPs are perfect, i.e. satisfy some axioms expressing, for
example, an impossibility of extraction of open texts from ciphertexts without knowing the
corresponding cryptographic keys.

In this paper we present a new model of SPs based on Milner’s Calculus of Communi-
cating Systems [1] and theory of processes with message passing [2]. This model is a graph
analog of a Calculus of Cryptographic Protocols (spi-calculus, [3]). It can serve as a theo-
retical foundation for a new method (presented in the paper) of verification of SPs, where
verification means a constructing of mathematical proofs that SPs meet the desired proper-
ties. Examples of such properties are integrity and secrecy. These properties are defined
formally, as some conditions expressed in terms of an observational equivalence.

1.2 Verification of security protocols

There are examples of SPs ([4]–[8]) which were used in safety-critical systems, however
it turned out that the SPs contain vulnerabilities of the following forms:

– agents involved in these SPs can receive distorted messages (or lose them) as a result
of interception, deletion or distortion of transmitted messages by an adversary, that
violates the integrity property,

– an adversary can find out a confidential information contained in intercepted messages
as a result of erroneous or fraudulent actions of SP agents.

These examples justify that for SPs used in safety-critical systems it is not enough
informal analysis of required properties, it is necessary

– to build a mathematical model of an analyzed SP,
– to describe security properties of the analyzed SP as mathematical objects (e.g. graphs,

or logical formulas), called a formal specification, and



– to construct a mathematical proof that the analyzed SP meets (or does not meet) the
formal specification, this proof is called a formal verification.

In the process model described in the paper SPs and their formal specifications are repre-
sented by processes with message passing. Many important properties of SPs (in particular,
integrity and secrecy) can be expressed as observational equivalence of such processes.

One of the most significant advantages of the proposed process model of SPs is a low
complexity of proofs of correctness of SPs. In particular, there is no need to build a set of
all reachable states of analyzed SPs, if the set of all these states and transmitted messages
is unbounded.

Among other models of SPs most popular are logical models ([9]–[13]). These models
provide possibility to reduce the problem of verification of SPs to the problem of proofs of
theorems that analyzed SPs meet their specifications. Algebraic and logical approaches to
verification are considered also in [14]–[16].

2 Description of a process model of security protocols

In the process model described below SPs and formal specifications of their properties
are represented by graphs, whose edges are labeled by actions. Actions are expressions
consisting of terms and formulas.

2.1 Variables, constants, terms

We assume that there are given a set X of variables, a subset K ⊆ X of keys, and a
set C of constants. A set E of terms is defined inductively:

– ∀x ∈ X , ∀ c ∈ C x and c are terms,
– for each list e1, . . . , en of terms the record e1 . . . en is a term,

(if the above list is empty, then the corresponding term is denoted by ε),
– ∀ k ∈ K, ∀ e ∈ E the record k(e) is a term (called an encrypted message (EM), this

term represents a result of an encryption of e on the key k).

Terms are designed for a representation of messages transmitted between participants of
communications, a term of the form e1 . . . en represents a composite message consisting of
messages corresponding to the components e1, . . . , en. ∀ e ∈ E the set of variables occurred
in e is denoted by Xe. If terms e, e′ have the form e1, . . . , en and e′1, . . . , e

′
n′ , respectively,

then the record ee′ denotes the term e1, . . . , ene
′
1, . . . , e

′
n′ , and ∀ e ∈ E εe = eε = e.

2.2 Formulas

Elementary formulas (EFs) are records of the form e = e′ and e ∈ E (where e, e′ ∈ E ,
and E is a subset of E). A formula is a conjunction of EFs. The symbols > and ⊥ denote
true and false formulas respectively (for example, > = (c1 = c1), ⊥ = (c1 = c2), where c1
and c2 are different constants). A set of formulas is denoted by B. ∀ b ∈ B Xb is a set of all
variables occurring in b.
∀ b1, b2 ∈ B b1 ≤ b2 means that b2 is a logical consequence of b1 (where the concept of

a logical consequence is defined by a standard way).
If b1 ≤ b2 and b2 ≤ b1, then b1 and b2 are assumed to be equal.
∀ k, k′ ∈ K, ∀ e, e′ ∈ E the formulas k(e) = k′(e′) and (k = k′) ∧ (e = e′) are assumed

to be equal. The records e1 =b e2 and e ∈b E means that b ≤ (e1 = e2) and b ≤ (e ∈ E)
respectively.
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2.3 Closed sets of terms

Let E ⊆ E and b ∈ B. The set E is said to be b–closed if

–
(
∀ i = 1, . . . , n ei ∈ E

)
⇔ e1 . . . en ∈ E,

– ∀ k ∈ E ∩ K
(
e ∈ E ⇔ k(e) ∈ E

)
,

– ∀ e, e′ ∈ E (e =b e
′) ⇒

(
e ∈ E ⇔ e′ ∈ E

)
.

Closed sets of terms are used for representation of sets of messages which can be known
to an adversary. The above conditions correspond to operations which an adversary A can
perform with his available messages:

– if A has e1, . . . , en, then it can compose the message e1 . . . en,
– if A has e1 . . . en, then it may get its components e1, . . ., en,
– if A has k and e, where k is a key, then it can create a EM k(e),
– if A has an EM k(e) and a key k, then it can decrypt k(e), i.e. get e.

Theorem 1. ∀E ⊆ E , ∀ b ∈ B there is a least (w.r.t. an inclusion of sets) b–closed set
Eb ⊆ E , such that E ⊆ Eb.

LetD1, D2 ⊆ E , and b1, b2 ∈ B. A binary relation µ ⊆ Db1
1 ×D

b2
2 is said to be a similarity

between (D1, b1) and (D2, b2), if ∀ (e1, e2) ∈ µ

– ∀ e′1, e′2 ∈ E (e′1, e2) ∈ µ⇔ (e1 =b1 e
′
1), (e1, e

′
2) ∈ µ⇔ (e2 =b2 e

′
2),

– the conditions ∃ e1
i , . . . , e

n
i ∈ Dbi

i : (ei =bi e
1
i . . . e

n
i ) (i = 1, 2) are equivalent, and if

these conditions hold, then ∀ i = 1, . . . , n (ei1, e
i
2) ∈ µ,

– the conditions ∃ ki, e′i ∈ Dbi
i : (ei =bi ki(e

′
i)) (i = 1, 2) are equivalent, and if these

conditions hold, then (k1, k2) ∈ µ and (e′1, e
′
2) ∈ µ.

A set of all similarities between (D1, b1) and (D2, b2) is denoted by the record
Sim

(
(D1, b1), (D2, b2)

)
.

2.4 Actions

An action is a record of one of the three kinds: an input, an output, an internal action.
Inputs and outputs are associated with an execution, defined below.

– An input is an action of the form e?e′, where e, e′ ∈ E . An execution of this action
consists of a receiving a message through a channel named e, and writing components
of this message to variables occurring in e′.

– An output is an action of the form e!e′, where e, e′ ∈ E . An execution of this action
consists of a sending a message e′ through a channel named e.

– An internal action is an action of the form b, where b ∈ B.

The set of all actions is denoted by A, ∀ a ∈ A a set of variables occurred in a is denoted
by Xa.

2.5 Processes with a message passing

Processes with a message passing are intended for description of SPs and formal specifi-
cations of their properties.

A process with a message passing (called below briefly as a process) is a tuple
P = (S, s0, R, b0, D0, H0), where
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– S is a set of states, s0 ∈ S is an initial state,
– R ⊆ S × A × S is a set of transitions, each transition (s, a, s′) ∈ R is denoted by the

record s a→ s′,
– b0 ∈ B is an initial condition,
– D0 ⊆ E is a set of disclosed terms, values of these terms are known to both the process
P and the environment at the initial moment, and

– H0 ⊆ X is a set of hidden variables.

A set of all processes is denoted by P, ∀P ∈ P the records SP , s0
P , RP , b

0
P , D

0
P , H

0
P

denote the corresponding components of P . A set of variables occurring in P is denoted by
XP . A process P such that RP = ∅ is denoted by 0.

A transition s a→ s′ is said to be an input, an output, or an internal transition, if a
is an input, an output, or an internal action, respectively.

A process P can be represented as a graph (denoted by the same symbol P ): its nodes are
states from SP , and edges are corresponded to transitions from RP : each transition s a→ s′

corresponds to an edge from s1 to s2 labelled by a. We assume that for each process P under
consideration the graph P is acyclic.

2.6 An execution of a process

An execution of a process P ∈ P can be informally understood as a walk on the graph
P starting from s0

P , with an execution of actions that are labels of traversed edges. At each
step i ≥ 0 of this walk there are defined

– a state si ∈ SP of the process P at the moment i,
– a condition bi ∈ B on variables of P at the moment i, and
– a set Di ⊆ E of disclosed messages at the moment i, i.e. messages known to both the

process P and the environment at the moment i.

An execution of a process P ∈ P is a sequence of the form

(s0
P , b

0
P , D

0
P ) = (s0, b0, D0)

a1→ (s1, b1, D1)
a2→ . . .

an→ (sn, bn, Dn)

where ∀ i = 1, . . . , n (si−1
ai→ si) ∈ RP , (bi, Di) = (bi−1, Di−1)ai, and

∀ b ∈ B, D ⊆ E , a ∈ A (b,D)a =

 (b,D ∪ {e}), if a = d?e or d!e, and d ∈ Db,
(b ∧ a,D), if a ∈ B,
undefined, otherwise.

We assume that a value of each variable x ∈ H0
P is unique and unknown to an environ-

ment of P at the initial moment of any execution of P .
A set of all executions of P can be represented by a labelled tree TP , where

– a root t0P of the tree TP is labelled by the triple (s0
P , b

0
P , D

0
P ), and

– if the set of edges of P outgoing from s0
P is {s0

P
ai→ si | i = 1, . . . ,m}, then for each

i ∈ {1, . . . ,m}, such that ∃ (bi, Di) = (b0P , D
0
P )ai,

• TP has an edge of the form t0P
ai→ ti, and

• a subtree growing from ti is TPi , where Pi = (SP , si, RP , bi, Di, H
0
P \D

bi
i ).

The set of nodes of TP is denoted by the same record TP . For each node t ∈ TP the
records st, bt, Dt denote corresponding components of a label of t.
∀ t, t′ ∈ TP the record t → t′ means that either t = t′, or there is a path in TP of the

form t = t0
a1→ t1

a2→ . . .
am→ tm = t′, where a1, . . . , am ∈ B.
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2.7 Observational equivalence of processes

In this section we introduce a concept of observational equivalence of processes. This
concept has the following sense: processes P1 and P2 are observationally equivalent iff for
any external observer (which can observe a behavior of P1 and P2 by sending and receiving
messages) these processes are indistinguishable.

An example of a pair of observationally equivalent processes is the pair

Pi = ({s0
i , si}, s0

i , {s0
i

c ! ki(ei)→ si},>, {c}, {ki}) (i = 1, 2). (1)

P1 and P2 send a unique message via channel c and then terminate. Any process observing
an execution of P1 and P2 is unable to distinguish them.

Processes P1, P2 ∈ P, are said to be observationally equivalent iff there is a binary
relation µ ⊆ TP1

× TP2
satisfying the following conditions:

1. ∀ (t1, t2) ∈ µ ∃µt1,t2 ∈ Sim
(
(Dt1 , bt1), (Dt2 , bt2)

)
,

2. (t0P1
, t0P2

) ∈ µ, ∀ (d1, d2) ∈ µt0P1
,t0P2
∃ d ∈ E : di =b0Pi

d (i = 1, 2),

3. ∀ (t1, t2) ∈ µ, for each edge t1
a1→ t′1, ∃ t′2 ∈ TP2

: (t′1, t
′
2) ∈ µ, µt1,t2 ⊆ µt′1,t′2 ,

– if a1 = d1 . e1 (. ∈ {?, !}), then ∃ t, t′ ∈ TP2 : t2 → t, t′ → t′2, and ∃ d2, e2: t
d2.e2→ t′,

(d1, d2) ∈ µt′1,t′2 , (e1, e2) ∈ µt′1,t′2 ,
– if a1 ∈ B, then t2 → t′2,

4. a condition which is symmetric to condition 3: for each pair (t1, t2) ∈ µ, and each edge
t2

a2→ t′2 there is a node t′1 ∈ TP1
, such that (t′1, t

′
2) ∈ µ, etc.

For example, processes Pi (i = 1, 2) from (1) are observationally equivalent, because

in this case TPi has the form (si0,>, {c})
c ! ki(ei)→ (si,>, {c, ki(ei)}), and the required µ is

{(s0
1, s1), (s0

2, s2)}.

2.8 Operations on processes

In this section we define operations on processes which can be used for a construction of
complex processes from simpler ones.

Prefix action ∀ a ∈ A, ∀P ∈ P [a]P is a process defined as follows:

S[a]P
def
= {s} t SP , s0

[a]P

def
= s, R[a]P

def
= {s a→ s0

P } tRP ,
b0[a]P

def
= b0P , D

0
[a]P

def
= Xa ∪D0

P , H
0
[a]P

def
= H0

P .

An execution of [a]P can be informally understood as follows: at first the action a is
executed, then [a]P is executed just like P .

Choice ∀P1, P2 ∈ P P1 + P2 is a process defined as follows: all states of P1, that also
belong to SP2

, are replaced by fresh states, and

SP1+P2

def
= {s} t SP1 t SP2 , s0

P1+P2

def
= s,

RP1+P2

def
= RP1

tRP2
t {s a→ s′ | (s0

Pi

a→ s′) ∈ RPi
, i ∈ {1, 2}},

b0P1+P2

def
= b0P1

∧ b0P2
, D0

P1+P2

def
= D0

P1
∪D0

P2
, H0

P1+P2

def
= H0

P1
∪H0

P2
.

An execution of P1 + P2 can be understood as follows: at first it is selected (non-
deterministically) a process Pi ∈ {P1, P2} which can execute its first action, and then P1+P2

is executed as the selected process.
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Parallel composition ∀P1, P2 ∈ P (P1, P2) is a process defined as follows: all variables
in XP1

\D0
P1
, that also belong to XP2

\D0
P2
, are replaced by fresh variables, and

– S(P1,P2)
def
= SP1

× SP2
, s0

(P1,P2)

def
= (s0

P1
, s0
P2

),
– R(P1,P2) consists of the following transitions:
• (s1, s2)

a→ (s′1, s2), where (s1
a→ s′1) ∈ RP1 , s2 ∈ SP2 ,

• (s1, s2)
a→ (s1, s

′
2), where s1 ∈ SP1

, (s2
a→ s′2) ∈ RP2

,
• (s1, s2)

β→ (s′1, s
′
2), where β = (d1 = d2) ∧ (e1 = e2) (si

ai→ s′i) ∈ RPi
(i = 1, 2),

{a1, a2} = {d1!e1, d2?e2} (such transition is said to be diagonal),
– b0(P1,P2)

def
= b0P1

∧ b0P2
, D0

(P1,P2)

def
= D0

P1
∪D0

P2
, H0

(P1,P2)

def
= H0

P1
tH0

P2
.

An execution of (P1, P2) can be understood as undeterministic interleaving of executions
of P1 and P2: at each moment of an execution of (P1, P2)

– either one of P1, P2 executes an action, and another is in waiting,
– or one of P1, P2 sends a message, and another receives this message.

A process (. . . (P1, P2), . . . , Pn) is denoted by (P1, . . . , Pn).

Replication ∀P ∈ P a replication of P is a process P∧ that can be understood as infinite
parallel composition (P, P, . . .), and is defined as follows.
∀ i ≥ 1 let Pi be a process which is obtained from P by renaming of variables: ∀x ∈

XP \D0
P each occurrence of x in P is replaced by the variable xi, such that all the variables

xi are fresh. Components of P∧ have the following form:

– SP∧
def
= {(s1, s2, . . .) | ∀ i ≥ 1 si ∈ SP }, s0

P∧
def
= (s0

P , s
0
P , . . .),

– ∀ (s1, . . .) ∈ SP∧ , ∀ i ≥ 1, ∀ (si
a→ s) ∈ RPi

RP∧ contains the transitions
• (s1, . . .)

a→ (s1, . . . , si−1, s, si+1, . . .), and
• (s1, . . .)

β→ (s1, . . . , si−1, s, si+1, . . . , sj−1, s
′, sj+1, . . .), where

β = (d1 = d2) ∧ (e1 = e2), (sj
a′→ s′) ∈ RPj

for some j 6= i, and {a, a′} =
{d1!e1, d2?e2},

– b0P∧
def
= b0P , D

0
P∧

def
= D0

P , H
0
P∧

def
=
⊔
i≥1H

0
Pi
.

Hiding ∀P ∈ P, ∀X ⊆ X PX
def
= (SP , s

0
P , RP , b

0
P , D

0
P \X,H0

P ∪X).
If X = {x1, . . . , xn}, then PX is denoted by Px1,...,xn

.

Theorem 2. Observational congruence preserves operations of prefix action, parallel
composition, replication and hiding.

2.9 A sufficient condition of an observational equivalence

Let P ∈ P. A labeling of states of P is a set {(bs, Ds) | s ∈ S}, such that

– S ⊆ SP , ∀ s ∈ S bs ∈ B and Ds ⊆ E , s0
P ∈ S, bs0P = b0P , Ds0P

= D0
P ,

– for each transition (s
a→ s′) ∈ RP , if s′ ∈ S then s ∈ S, and in this case

• if a = d . e, where . ∈ {?, !}, then d ∈ Dbs
s , bs ≤ bs′ , Ds ∪ {e} ⊆ Dbs′

s′ ,
• if a ∈ B, then bs ∧ a ≤ bs′ and Ds ⊆ Ds′ .
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∀ s, s′ ∈ SP the record s→ s′ means that either s = s′, or there is a set of thansitions of
the form s = s0

a1→ s1
a2→ . . .

am→ sm = s′, where a1, . . . , am ∈ B.

Theorem 3 (a sufficient condition of an observational equivalence).
Let P1, P2 ∈ P, where SP1 ∩ SP2 = ∅. Then P1 ≈ P2, if there are a binary relation

µ ⊆ SP1 × SP2 and labelings {(bs, Ds) | s ∈ SP1}, {(bs, Ds) | s ∈ SP2} of states of P1 and P2

respectively, such that

1. each pair (s1, s2) ∈ µ is associated with µs1s2 ∈ Sim
(
(Ds1 , bs1), (Ds2 , bs2)

)
,

2. (s0
P1
, s0
P2

) ∈ µ, and each element of the set µ0 def
= µs0P1

s0P2
has the form (x, x), where

x ∈ D0
P1
∩D0

P2
,

3. for each pair (s1, s2) ∈ µ, and each transition (s1
a1→ s′1) ∈ RP1 there is a state s′2 ∈ SP2 ,

such that (s′1, s
′
2) ∈ µ, µs1s2 ⊆ µs′1s′2 , and

– if a1 is input or output, then a1 = x . e1, where . ∈ {?, !}, (x, x) ∈ µ0, ∃ s, s′ ∈ SP2
:

s2 → s, s′ → s′2, ∃ e2: s
x.e2→ s′, (e1, e2) ∈ µs′1s′2 ,

– if a1 ∈ B, then s2 → s′2,
4. a condition which is symmetric to condition 3: for each pair (s1, s2) ∈ µ and each

transition s2
a2→ s′2, ∃ s′1 ∈ SP1

: (s′1, s
′
2) ∈ µ, etc.

Theorem 4. Let P be a process, {(Ds, bs) | s ∈ S} be a labelling of P , and RP has an
edge s a→ s′ such that s, s′ ∈ S, and a has the form d?k(e), where Dbs

s does not contain k
and any term of the form k(e′). Then P ≈ P ′, where P ′ is obtained from P by removing the
above edge and all unreachable (from s0

P ) states which appear after removing the edge.

3 Security protocols

A security protocol (SP) is a process P ∈ P of the form (P1, . . . , Pn)X , where
P1, . . . , Pn are processes corresponding to agents involved in the SP, and X ⊆ X is a
shared secret of the agents. In this section we present an application of the proposed ap-
proach to description, specification of properties and verification of several examples of SPs,
all of them are analogs of examples from [3].

3.1 A message passing through a hidden channel

First example is a simplest SP for a message passing through a hidden channel. This SP
consists of a sending of a message x from an agent a to an agent b through a channel named
c (where only a and b know the name c of this channel), b receives the message and stores
it in variable y, then b behaves like a process P . This SP is represented by the diagram

-

a b

P

c : x

A behavior of a and b is represented by processes A and B respectively, A def
= [c !x] 0,

B
def
= [c ?y]P (where c 6∈ P ). The SP is represented by the process Sys def

= (A,B)c. Graph
representations of processes in Sys is the following:

– process A:

����
�
�

�
�A0

����A1-
c !x

74



– process B:
����
�
�

�
�B0

����P-
c ? y

(where
����P denotes a subgraph corresponded to the process P )

– process (A,B):

����
�
�

�
�A0B0

����A1P

����A1B0

����A0P

-
c !x

-
c !x

?

c ? y

?

c ? y

H
H

H
H

H
H

H
Hj

y = x

(where
����A0P and

����A1P denote subgraphs corresponded to copies of P (nodes of these

graphs are denoted by Ais, where i = 0, 1, and s ∈ SP ), and the arrow from
����A0P to����A1P denotes a set of corresponding transitions from A0s to A1s, where s ∈ SP ).

For the reason of theorem 4, the process (A,B)c is observationally equivalent to the

process
����
�
�

�
�A0B0

����A1P-
y = x

.

The process model allows us to formally describe and verify properties of integrity and
secrecy of the above SP. These properties are as follows.

– Integrity of the SP is the following property: after a completion of the SP agent b
receives the same message that has been sent by agent a.

– Secrecy of the SP is the following property:
• for each pair x1, x2 of messages, which a can send b by this SP, and
• for each two sessions of this SP, where the first session is a passing of x1, and the
second one is a passing of x2,

any external (i.e. different from a and b) agent, observing an execution of these sessions,
is unable to extract from the observed information any knowledge about the messages
x1 and x2: whether the messages are the same or different (unless these knowledges are
not disclosed by participants a, b).
More accurately, the secrecy property can be described as follows: for any pair x1, x2 of
messages, which a can send b by an execution of this SP
• if for any external observer the process [y = x1]P (which describes a behavior of the
agent b after receiving x1) is indistinguishable from the process [y = x2]P (which
describes a behavior of b after receiving x2),
• then for any sessions of an execution of this SP, where the first one is a passing of x1,
and the second one is a passing of x2, any external agent, observing the execution
of these sessions, can not determine, are identical or different messages transmitted
in those sessions.

A formal description and verification of the properties of integrity and secrecy of this SP
is as follows.

1. A property of integrity is described by the proposition

Sys ≈ ˜Sys (2)
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where ˜Sys describes a SP which is defined like the original SP, but with the following
modification of b: after receiving a message and storing it in a fresh variable y′, the value
of y is changed to the value that a really sent.
A behavior of modified b is described by the process B̃def

= [c ?y′] [y = x]P , and the process
˜Sys has the form (A, B̃)c.

Now we prove (2). The definition of operations on processes implies that

Sys ≈ [y = x]P, ˜Sys ≈ [y′ = x] [y = x]P, (3)

that implies (2), because y′ 6∈ [y = x]P.

2. A property of secrecy of this SP is described by the implication

[y = x1]P ≈ [y = x2]P ⇒ [x = x1]Sys ≈ [x = x2]Sys
(where x1, x2 are fresh variables). (4)

Now we prove (4). The the premise of implication (4) implies the statement

[y = x] [y = x1]P ≈ [y = x] [y = x2]P,

which is equivalent to the statement

[x = x1] [y = x]P ≈ [x = x2] [y = x]P. (5)

(5) and first proposition in (3) imply

[x = x1]Sys ≈ [x = x1] [y = x]P ≈ [x = x2] [y = x]P ≈ [x = x2]Sys.

3.2 A SP with a creation of a new channel

Second SP consists of a message passing from a to b, with an assumption that a channel
for this passing should be created during the execution of the SP. An auxiliary agent t is
used in the SP (t is a trusted intermediary), and it is assumed that a name of a created
channel must be known only to a, b, and t.

This SP is represented by the diagram

-

-

-

a t b

P

ca : c

cb : c

c : x

A behavior of agents a, t, b is represented by the processes A, T , B, where

A
def
= [ca ! c] [c !x] 0, T

def
= [ca ? c] [cb ! c] 0, B

def
= [cb ? c] [c ? y]P.

The SP is represented by the process Sys def
= (Ac, T, B)ca,cb .

A formal description of integrity and secrecy of the SP is represented by propositions (2)
and (4), where ˜Sys

def
= (Ac, T, B̃)ca,cb , B̃

def
= [cb ? c] [c ? y′] [y = x]P.
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3.3 A passing of an encrypted message

Third example is a SP, which involves agents a and b having a common key k (only a
and b know k), a and b can encrypt and decrypt messages by this key using a symmetric
encryption system. The SP is as follows:

– a sends b a ciphertext k(x) through an open channel c,
– b receives the ciphertext, decrypts it, stores the extracted message x in the variable y,

then behaves as a process P .

This SP is represented by the diagram
-

a b

P

c : k(x)

.
A behavior of agents a and b is represented by the processes A and B, where A def

=

[c ! k(x)] 0, B def
= [c ?k(y)]P , and the SP is represented by Sys def

= (A,B)k.
A formal description of the properties of integrity and secrecy of the SP is represented

by (2) and (4), where ˜Sys
def
= (A, B̃)k, B̃

def
= [c ? k(y′)] [y = x]P.

An integrity property of the SP is proposition (2), which in this case has the form
([c ! k(x)] 0, [c ?k(y)]P )k ≈ ([c ! k(x)] 0, [c ?k(y′)] [y = x]P )k, and can be proven with use of
theorem 3. To prove the secrecy property we prove implication (4). With use of theorem 3
it is not so difficult to prove that (3) and the premise of implication (4) imply Sys ≈ [y =
x]P ≈ [y = x′]P, that proves (4).

References

1. Milner R. A Calculus of Communicating Systems // Lecture Notes in Computer Science, 1980.
Vol. 92. 172 p.

2. Mironov A., A Method of a Proof of Observational Equivalence of Processes, Proceedings of
the Fourth International Valentin Turchin Workshop on Metacomputation, Pereslavl-Zalessky,
2014, p. 194-222. See also
http://meta2014.pereslavl.ru/papers, https://arxiv.org/abs/1009.2259

3. Abadi M., Gordon A., A Calculus for Cryptographic Protocols: The Spi Calculus, Proceedings
of the Fourth ACM Conference on Computers and Communications Security, (1997) 36-47,
ACM Press.

4. Denning D., Sacco G., Timestamps in Key Distribution Protocols, Communications of the
ACM, Vol. 24, No. 8, (1981) 533-536.

5. Needham R., Schroeder M., Using Encryption for Authentication in large networks of com-
puters, Communications of the ACM, 21(12), (1978) 993-999.

6. Needham R., Schroeder M., Authentication revisited, Operating Systems Review, Vol. 21, No.
1, (1987).

7. Cervesato I., Jaggard A.D., Scedrov A., Tsay J.-K., Walstad C., Breaking and fixing public-key
Kerberos, Information and Computation Volume 206, Issues 2-4, (2008), Pages 402-424.

8. Lowe G., Breaking and Fixing the Needham-Schroeder Public-Key Protocol Using FDR, In
Proceedings of TACAS, (1996) 147-166, Springer Verlag.

9. Burrows M., Abadi M., Needham R., A Logic of Authentication, ACM Transactions on Com-
puter Systems, 8(1), (1990) 18-36.

10. Syverson P., van Oorschot P.C., On Unifying some Cryptographic Protocol Logics, Proceed-
ings of the 1994 IEEE Computer Security Foundations Workshop VII, (1994) 14-29, IEEE
Computer Society Press.

11. Syverson P., Meadows C., A Logical Language for Specifying Cryptographic Protocol Require-
ments, Proceedings of the 1993 IEEE Computer Security Symposium on Security and Privacy,
(1993) 165-177, IEEE Computer Society Press.

77



12. Paulson L., Proving Properties of Security Protocols by Induction, Proceedings of the IEEE
Computer Security Foundations Workshop X, (1997) 70-83, IEEE Computer Society Press.

13. Brackin S., A State-Based HOL Theory of Protocol Failure, (1997), ATR 98007, Arca Systems,
Inc., http://www.arca.com/paper.htm.

14. Mark D. Ryan and Ben Smyth, Applied pi calculus, in: Formal Models and Techniques for
Analyzing Security Protocols, Edited by Veronique Cortier, 2011 IOS Press, p. 112-142.

15. M. Abadi, B. Blanchet, C. Fournet. The Applied Pi Calculus: Mobile Values, New
Names, and Secure Communication. [Research Report] ArXiv. 2016, pp.110. hal-01423924,
https://arxiv.org/abs/1609.03003

16. Ricardo Corin, Analysis Models for Security Protocols, Enschede, The Netherlands, 2006.

78
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Abstract. Formal modeling languages play a key role in the development of software
since they enable users to prove correctness of system properties. However, it is not
always clear how to map a formal model to a specific programming language. This
paper presents a translator tool from Event-B models into Eiffel programs, making
use of Event-B’s mathematical proofs and Eiffel’s Design-by-Contract methodologies.
The tool has been tested on several Event-B models.

1 Introduction

Modeling methodologies are used in software development to foresee how the resulting
system will behave prior to building it. This stage might reveal hidden errors that can be
handled at a smaller cost. Event-B is an example of such a methodology. Event-B is a formal
method for system-level modeling and analysis [1]. It uses set-theory notation, refinement
techniques to model different abstraction levels and mathematical proofs to ensure trace-
ability from the requirements to the model. Event-B comes with an IDE, Rodin, which is
based on Eclipse.

The main idea of the language, according to [1], is to structure the work on a system in
a way that is similar to how physicists and architects do their work – creating initial rep-
resentations that first appear in the mind and only after that constructing actual physical
artifacts. The main components of any system are states and transitions that are represented
as Contexts and Machines in Event-B. Contexts consist of sets, constants and axioms. Ma-
chines contain variables, invariants, and events including guards (a condition that must hold
for an event to be executed), and actions (the actual semantics of an event). The IDE can
be extended with various plug-ins, among them several translators from Event-B into pro-
gramming languages have been developed: EventB2Java [10,9], EB2ALL [5], EventB2Dafny
[2] and others.

The current paper presents the implementation of a Rodin plug-in that translates Event-
B models into Eiffel [6], an object oriented programming language. Eiffel’s main aim is to
increase reliability of the software. One of its main principles is Design by Contract, a way of
designing software with the main idea to define a contract between a client and a supplier.
This contract ensures that if there is an error in the program, it is clear on whose part it
originated and where [6]. This is made possible by class invariants, pre- and post-conditions
in methods.

The paper is structured as follows. Section 2 describes the implemented components
of the plug-in. Section 3 shoes the Event-B models used for testing and evaluation of the
plug-in. Finally, Section 4 is devoted for conclusions, outlining potential improvements and
directions for future work.

2 Implementation

The Rodin plug-in is an implementation of the rules described in [12]. Machines are
translated to Eiffel classes. Event-B Events and variables are features and variables of the



translated class, respectively. Guards and actions are translated as preconditions and body
of the features. Contexts are being translated as class constants. The translation takes
advantage of the embedded Design-by-Contract mechanism defined in Eiffel, for instance,
Machine invariants are naturally translated to class invariants.

Another part of the implementation required translation of the mathematical language
of Event-B. There are in total 90 symbols denoting different mathematical formulas. Some
of them exist natively in Eiffel while others had to be implemented.

The implementation was done in several steps: first the structure for the Rodin IDE
plug-in was set-up, then the information about the model was retrieved from the database
and, finally, the resulting elements were translated into Eiffel.

2.1 Event-B and Rodin Structure

The plug-in’s functionality is realized based on extensions and extension points that
define the point of contact between different programs. The package responsible for Rodin
extensions is org.rodinp.core. It provides an interface via which different extensions can
communicate and provide extension points.

Event-B package – org.eventb.core.ast – provides an Abstract Syntax Tree (AST) of
the system modeled in Rodin. This is a tree representation of the syntactic structure of an
Event-B model. A visitor has been implemented to traverse it. It translates the mathematical
notation into Eiffel code step by step.

2.2 The General Structure of the Tool

The packages included in the tool are plug-in and rodinDB (implementation of the
tool can be found in [8]). The plug-in package contains GenCodeEiffel.java that is the
entry point (defines the order of the translation), and Translator.java that implements a
Visitor (ISimpleVisitor2) that parses the formulas and traverses the AST. The rodinDB
package contains RodinDBElements.java that deals with retrieving information from the
Rodin Database.

Each Rodin project has a set of children of class IRodinElement which also have
IInternalElements in them. Depending on what type the internal elements is, it is possi-
ble to retrieve the information regarding machines and contexts from Rodin database. The
package includes 14 methods that handle this task.

2.3 Traversing the Abstract Syntax Tree

Rodin provides the Abstract Syntax Tree (AST) of an Event-B model. It is then necessary
to implement a Visitor to traverse the AST to translate the model parts into Eiffel.

The next step after retrieving information from the Rodin database is to parse the re-
ceived formulas and to organize them in a way suitable for Eiffel translation. The wrapper
methods dealing with parsing are created for almost each method from the rodinDB package.
The visitor implements parsePredicate(), that parses an Event-B predicate, parseExpres-
sion() that parses an Event-B expression and parseAssignment() that parses assignments.

As parameters they take a String-representation of a formula and launch the pass through
the AST. The methods in ISimpleVisitor2 are overridden to handle visits of different
branches of the tree such as Atomic Expressions (covers standalone integers, natural num-
bers, empty sets, booleans and others), Binary Predicates (implication and equality), Be-
comes Equal To (assignment to a variable or a parameter), Associative Expressions (unions,
intersections, backward and forward compositions, addition, multiplication) and many oth-
ers. The full set of types is described in [1].
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2.4 Translating into Eiffel

As each AST branch for a specific formula is visited, Eiffel code is generated and added
to the eiffelCode Array List that aggregates the translation and then returns it to the
code generator (GenCodeEiffel.java).

An excerpt of the visitor is shown in Figure 1. A free identifier is any variable from a
machine or an event. First the method checks whether the translation is done to retrieve
types or to translate event or machine parameters. Depending on the result, code is added
to different places.

Fig. 1. Free Identifier Translation

3 Evaluation

Several Event-B models were used in the testing phase of the plug-in. This phase also
captures how much and accurate (as without compilation errors in Eiffel) of the Event-B
mathematical language gets translated. Table 1 shows the results for all the tested models:
first column is the Event-B model taken from the literature; the second column indicates how
much code is correctly translated. For instance, 94% of the MIOmodel is being translated, the
remaining 6% belong to the limitations of the tool (discussed later); and the third column
is how much code results in compilation errors in Eiffel.

Social Event Planner: This model was used for testing during the implementation stage.
This model is described in more detail in [11]. It is a model for planing social events. The
functionality includes creating events, inviting people to them and setting up permissions for
inviting other people. This model defines its own sets (PERSON and CONTENTS). They
are translated as Eiffel user-defined classes.

An example Event-B event create_account is shown on Figure 2. ANY declares param-
eters of the event, WHERE denotes guards (necessaries conditions to hold for the event to
be triggered) of the event, THEN are the actions of the event. Figure 3 depicts the output
of the plug-in. The output is a translation of Event-B event (in Figure 2) into Eiffel. There
are two require statements corresponding to two guards (from Event-B) that ensure that
the variables belong to the sets they are supposed to. The do statements assign translated
expressions to the variables contents, persons, owner and pages, initializing them with
an appropriate type. In Eiffel, create s a keyword used to create instances a classes, similar
to new in Java or C++.

Class EBSET is a class created specifically for the translation of sets from Event-B. It in-
herits most of Eiffel set’s functionality but allows more flexibility. It is part of eb_math_lang
package that also includes natural numbers (EBNAT), integers, ranges and relations.
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ANY
c1
p1

WHERE
grd1 : p1 ∈ PERSON\persons
grd2 : c1 ∈ CONTENTS\contents

THEN
act1 : contents := contents ∪ {c1}
act2 : persons := persons ∪ {p1}
act3 : owner := owner ∪ {c1 7→ p1}
act4 : pages := pages ∪ {c1 7→ p1}

END

Fig. 2. create_account event

create_account (p1: PERSON; c1: CONTENTS)
require

grd1: PERSON.difference (persons).has (p1)
grd2: CONTENTS.difference (contents).has (c1)

do
contents.assigns ((contents).union (create { EBSET[CONTENTS]}.singleton (c1)))
persons.assigns ((persons).union (create { EBSET[PERSON]}.singleton (p1)))
owner.assigns ((owner).union (create { EBREL[CONTENTS,PERSON]}.vals (<<(create

{ EBPAIR[CONTENTS,PERSON]}. make (c1, p1))>>))
pages.assigns ((pages).union (create { EBREL[CONTENTS,PERSON]}.vals (<<(create

{ EBPAIR[CONTENTS,PERSON]}. make(c1, p1))>>))
end

Fig. 3. Eiffel Code for create_account event

MIO – Bus Transportation System: This model includes several entities: buses, bus stations,
people, doors and sensors. It regulates bus transportation and is described in [3]. There are
six refinements with each adding new entities and concepts. It is an extensive model with
21 actions in the initialisation event and 15 invariants for the last refinement.

Binary and Linear Search: These two models represented binary and linear search algo-
rithms. The former one looks for a number, dividing each subsection into two, and the latter
goes through a set of numbers in a linear way.

The binary search included three events apart from the initialisation (inc[rement],
dec[rement] and found). The model for linear search included a similar found event as
well as progress event that continued to search for the number if the correct one is not
found.

In general, the tool is able to translate 86% of the 90 symbols that can be used with
Event-B. Although the remaining 14% is not implemented yet, it is noted that they occur
rarely in the models.

A common problem for most models (e.g. Social Event Planner, MIO, Binary Search
and Sorting the Array) that results in compilation errors is due to the type translation of
variables. For instance, the Event-B assignment owner := owner∪{cmt 7→ owner(rc)} with
a set extension ({}) including more than two expressions poses a problem as the types of the
sets should be included into the Eiffel code before visiting the variable in the tree. Therefore,
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instead of a type, Java’s null keyword is returned (as the tool is written in Java and for
Eiffel this is an undefined keyword). This problem occurs for set extensions (declaring a set
between two curly brackets), backward and forward composition of functions.

If the correct types are included into the Eiffel code manually, the compilation returns
no errors. As Table 1 shows, these types of errors are not very common, e.g. for Social Event
Planner there are only three cases of such statements, for MIO, Binary Search and Sorting
the Array there is only one.

Model Translated Compiled
Social Event Planner 100% 98%

MIO 94% 88%
Binary Search 100% 92%
Linear Search 100% 100%

Reversing the Array 78% 78%
Sorting the Array 100% 96%
Finding a minimum 94% 94%

Square root 100% 100%

Table 1. Summary of the results.

Other models (namely, reversing an array and finding a minimum) require those parts
of the mathematical language that have not been implemented (Bound Declarations and
Bound Identifiers that are used as variables in Quantified Predicates – ∀ and ∃). This is
where most of their errors occur.

The list of Event-B models used in this phase and their translation to Eiffel using the
plug-in can be found in [8].

4 Conclusion

This paper presents a Rodin plug-in that implements a translation from Event-B models
to the Eiffel programming language. The plug-in enables users to take advantages of Event-B
(e.g. refinement) to then translation to Eiffel, which provides an actual implementation of
the model, to take advantages of the language (e.g. Design by Contract). The main limitation
of the plug-in is that no proof of soundness has been carried out. This paper shows a proof-
of-concept and opens up a direction to carry out with the proof.

In order to be able to fully automate the translation, type retrieval for variables that are
further down the AST need to be implemented. This corresponds to 14% of the Event-B
mathematical language. One of the challenges is to translate choice from set (x :∈ S) that
arbitrarily chooses a value from the set S and choice by predicate (z :| P ) that arbitrarily
chooses values for the variable in z that satisfy the predicate P . For this, we plan to make
use of ProB or Constraint Programming to assign values that satisfy a predicate. Another
direction is related to the translation of Proof Obligations (POs), mathematical formulas,
automatically generated by Rodin, to Eiffel. POs need to be proven in order to ensure
that a machine is correct [4]. They can be proved either automatically or interactively. By
translating Proof Obligations into Specification Drivers [7] it will be possible to formally
verify the translated Eiffel code against its contracts.
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Abstract. The paper is a progress report and outlines (human-oriented) specifica-
tion and (pen-and-paper) verification of one particular algorithm to compute the
square root function in machine fix-point arithmetics. The function implements New-
ton method and uses a look-up table for initial approximations. Specification is pre-
sented in terms of total correctness assertions with use of precise arithmetic (i.e.
with unbounded precision) and the mathematical square root √

. . ., the algorithm
is presented in pseudo-code with explicit distinction between precise and machine
arithmetic, verification is done in Floyd-Hoare style. The primary purpose of the re-
search is to make explicit (axiomatise) properties of the machine arithmetic (in terms
of precise arithmetics) that are sufficient to verify one particular algorithm for the
square root function. Please refer preprint [3] motivation of this study, literature sur-
vey, and for complete proofs. Computer-aided validation of the proofs (using some
proof-assistant) is the topic for further studies.
Keywords: machine arithmetic, exact functions, formal verification, total and partial
correctness, Floyd-Hoare method, square root, Newton method, look-up table, fix-point
representation

1 Introduction

Let us specify a generic function (say SQR( , )) for generic numeric data types with two
parameters: the first parameter is for passing the argument value Y ≥ 0 and the second —
for passing the accuracy value Eps > 0; the function is for computing

√
Y with the accuracy

Eps.
The accuracy of this function SQR (i.e. the most wanted property and the only property

specified in the standard) can be formally specified by any (or both) of the following two
assertions:

– for all type-legal values y ≥ 0 and ε > 0, SQR(y, ε) differs from √y by no more than ε,
i.e. |√y − SQR(y, ε)| ≤ ε;

– for all type-legal values y ≥ 0 and ε > 0,
(
SQR(y, ε)

)2 differs from y by no more than
ε, i.e.

∣∣y − (SQR(y, ε)
)2∣∣ ≤ ε.

Let us fix the first specification since it compares numeric approximation against the precise
function.
? This research is supported by Russian Basic Research Foundation grant no. 17-01-00789 Platform-
independent approach to formal specification and verification of standard mathematical functions.



Fig. 1. A flowchart of the algorithm SQR

One may select any reasonable and feasible computation method to approximate √ .
(For example, [1] discusses 14 different algorithms and implementations.) For our case-study
we select a very intuitive, easy-to-implement and popular in education Newton Method:

1. input the number (to compute the square root) and guess an initial approximation for
the root;

2. compute the arithmetic mean between the guess and the number divided by the guess;
let this mean be a new guess;

3. repeat step 2 while the difference between the new and the previous guesses isn’t small
enough (i.e. doesn’t feet the use-defined accuracy).

Specification or a generic square root function with a generic numeric data type for input
and output values follows below:

[TY PY is a numeric type, Y ≥ 0 : TY PE, and Eps > 0 : TY PE]

SQR(Y, Eps) [|returned value −
√
Y | ≤ Eps]. (1)

Unfortunately, it is not easy to prove these specifications automatically and formally because
of several reasons. The major one is an axiomatization of the computer-dependent floating-
point arithmetic. Even a manual pen-and-paper verification of this specification in the precise
arithmetic for real numbers (i.e. assuming TY PY to be R) is not a trivial exercise: please
refer [3] for verification of the algorithm SQR depicted on Fig. 1 (that implements Newton
Method) in the case when 1 < Y .

2 Towards machine-oriented square root algorithm

The algorithm from Fig 1 may be improved (optimized). Firstly, since we study the case
1 < Y , then

√
Y ≤ X ≤ Y is part of the loop invariant, and hence it makes sense to

compute directly the absolute value AD := X2−Y
2X of D instead of computing D := Y−X2

2X
and then |D| in the loop condition. Next, we may use a fast hash function SUP : (1,∞)→
(1,∞) to compute good initial upper approximations instead of a very rough initial upper
approximation used in the algorithm SQR. (For example, it may be rounded-up square
roots.) While the first optimization just saves on each loop iteration, the second one reduces
the number of loop iterations. Fig. 2 shows a flowchart of the improved algorithm that we
refer as the algorithm ISQR in the sequel. In [3] we prove that for every initial value y > 1 of
the variable Y and every initial value ε > 0 of the variable Eps termination of the improved
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Fig. 2. A flowchart of the improved (optimized) algorithm ISQR

square root algorithm is guaranteed after (at most) 1 + dlog2
SUP (y)−√y

ε e loop iterations,
where d. . . e is integer round-up function.

For example if the function SUP returns the rounded-up square roots, y > 1 is the
initial (input) value of the variable Y , and ε > 0 is the initial (input) value of variable Eps
(accuracy) then 0 ≤ SUP (y) −√y < 1 and, hence, an upper bound for the number of the
loop iterations in the algorithm ISQR is 1− log2 ε instead of an upper bound 1 + log2

y−√y
ε

for the number of the loop iterations in the non-optimized algorithm SQR.
Since termination of the improved square root algorithm is guaranteed after (at most)

1 + dlog2
SUP (y)−√y

ε e loop iterations, then is possible to compute approximations for the
square root by a non-adaptive for-loop-based algorithm FSQR which flowchart depicted in
Fig. 3. The corresponding correctness assertion is

[Y > 1 & Eps > 0 & ∀y ∈ (1,+∞) :
√
y ≤ SUP (y) ≤ y)]

FSQR [|X −
√
Y | < Eps

2 ].
(2)

Termination of the algorithm FSQR is guaranteed by design since it is for-loop-based.
Informally speaking the partial correctness of the algorithm follows from the partial correct-
ness of the algorithm ISQR: while X2−Y

2X ≥ Eps values of X in both algorithms are equal
in each iteration, and then FSQR exercises several more iterations that move value of X
closer to

√
Y . Please refer [3] for a formal proof of the partial correctness.

Fig. 3. A flowchart of the non-adaptive for-loop-based algorithm FSQR
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3 Square root algorithm for fix-point arithmetics

3.1 Axiomatizing fix-point machine arithmetics

One of the problems with the improved and for-loop-based algorithms is how to imple-
ment an efficient function SUP . A hint is use of a numeric data type T with a (huge maybe)
finite set of values V alT ⊂ R instead of an infinite set R. Then the function SUP may be
implemented in two steps:

– define an efficient rounding up function round : V alT → V alT ,
– pre-compute and memorize a look-up table root with good upper approximations for

the roots for each of the rounded values.

Further details and steps depend on selected numeric data type.
In our case-study we assume the following properties of the data type T :

– the set of values V alT is a finite subset of mathematical reals R such that
• it comprises all reals in some finite range [− infT , supT ], where infT > 2, supT > 2,
with some fixed step 1

2 > δT > 0,
• and includes all integer numbers IntT in this range [− infT , supT ];

– legal binary arithmetic operations are
• addition and subtraction; if not the range overflow exception then these operations

are precise: they equal to the standard mathematical operations assuming their
mathematical results fall in the range [− infT , supT ] (and due to this reason are
denoted as + and −);

• multiplication ⊗ and division �; these operations are approximate but correctly
rounded in the following sense: for all x, y ∈ V alT
∗ if x× y ∈ V alT then x⊗ y = x× y;
∗ if x/y ∈ V alT then x� y = x/y;
∗ if x× y ∈ [− infT , supT ] then |x⊗ y − x× y| < δT /2;
∗ if x/y ∈ [− infT , supT ] then |x� y − x/y| < δT /2.

– legal binary relations are equality and all standard inequalities; these relations are pre-
cise, i.e. they equal to the standard mathematical relations (and due to this reason are
denoted as =, 6=, ≤, ≥, <, >).

Due to the assumptions about the set of values

V alT = {n× δT : n ∈ Z and − infT ≤ n× δT ≤ supT };

according the assumptions about integer values IntT within the range of V alT

[−2..2] ⊆ V alT and
1

δ T
∈ N.

In case when multiplication is guaranteed to be precise (the mathematical product is in
V alT ) then let us use the standard notation × instead of ⊗; similarly in case when division is
guaranteed to be precise (the mathematical dividend is in V alT ) then let us use the standard
notation / instead of �.
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Fig. 4. A flowchart of the square root algorithm fixSQR for fix-point arithmetic

3.2 Fix-point variant of the square root: algorithm, specification, and
correctness

A non-adaptive algorithm FSQR (Fig. 3) that uses mathematical operations transforms
into algorithm fixSQR (Fig. 4) that uses machine fix-point operations. This algorithm also
(as FSQR) uses a non-deterministic assignment operator

N := some n ∈ IntT that 2n−1 ≥ Stp

Eps

that differs from the assignment by use of some instead of any : this difference means that
later we select the value instead of use an arbitrary one.

In the new algorithm we use an additional variable Stp for a positive value in V alT , an
array root, and a function round that have the following properties:

STEP: value of Stp is a multiple of the accuracy Eps, divides supT and is used to define
the set ArgStp = {n× Stp : n ∈ N, and 1 < n× stp ≤ supT };

ROOT: root is a pre-computed look-up table indexed by ArgStp such that root[v]− δT <√
v ≤ root[v] for each index v ∈ ArgStp;

ROUND: the function round : V alT → ArgStp is a rounding-up such that round(u) −
step < u ≤ round(u) for each u ∈ V alT , u > 1.

Comment on the STEP property: we consider as a very natural the assumption that

– Stp is a multiple of the accuracy Eps since in the “limit” case Eps = δT and this Eps
divides any Stp ∈ V alT ;

– Stp divides the “extreme” value supT because this value should be provided with a
pre-computed square root upper approximation.

Specification of the square root algorithm fixSQR follows:

[Y ∈ V alT & Y > 1 & Eps ∈ V alT & Eps > 0 &
& STEP & ROOT & ROUND]

fixSQR [|X −
√
Y | <

(
Eps

2 + N × δT
)
].

(3)

Termination of the algorithm fixSQR is straightforward since it is a for-loop-based
algorithm. Please refer [3] for the pen-and-paper proof of the partial correctness.
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4 Summary and conclusion

Firstly we take a very standard Newton method to compute square root, present is
as an iterative algorithm SQR, specify it by Hoare total correctness assertion, and prove
its validity in the case when input argument is greater than 1, accuracy is positive, and
“computer” is precise (i.e. all computations are done in mathematical real numbers); the
upper bound of loop iterations of the algorithm SQR is logarithmic.

Next we improve the algorithm SQR by using an auxiliary function to compute better
initial approximations for square roots (it results in the algorithm ISQR) and then sug-
gest a for-loop-based algorithm FSQR that uses the same auxiliary function, computes a
lower bound for the number of iterations that is sufficient to achieve the specified accuracy;
both algorithms ISQR and FSQR work with precise arithmetic, but we prove that FSQR
achieves better accuracy than ISQR, and can achieves better accuracy if to increase the
number of the loop iterations.

Then we convert for-loop-based algorithm with precise arithmetic FSQR into algorithm
fixSQR with fix-point arithmetic, specify it by total correctness assertion and prove its
validity by adjustment of its runs with runs of FSQR with the same input data. Another
specifics of the algorithm fixSQR is use a look-up table (arrange as an array) for upper
approximations of square roots and rounding-up function.

Use of a machine fix-point arithmetic instead of the precise arithmetic results in situation
that more iterations of the loop doesn’t always improve accuracy in contrast to FSQR. Due
to this reason we suggest an other algorithm mixSQR that is a specialised version of the
algorithm fixSQR.

All proofs in our research were pen-and-paper proofs. So the first of the next topics for
further research is to validate all these proofs with aid of some automated proof-assistant.
We are going to use ACL2 due to industrial strength of this proof-assistant [2] for platform-
specific verification of the standard mathematical functions (but don’t rule out alternatives
to this assistant).

Nevertheless remark that we attempt and present in this paper an approach that we call
platform-independent. Also remark that we don’t attempt to build an axiomatization of an
“abstract” machine fix-point arithmetics. Instead we just make several explicit assumptions
about machine arithmetic (and how it relates to the precise arithmetic) that are sufficient
to validate specifications and algorithms with machine arithmetic by using its relations with
specifications and algorithms with precise arithmetics. We believe that our assumptions
about machine arithmetic are valid for many platforms and they are easy to check. So
another topic for further research is to prove an “existence theorem”, i.e. to give examples
of platforms that use fix-point machine arithmetics that satisfies our axiomatization.

Finally let us mention one more research topic — to find an “optimal balance” between
size of the array root with initial upper approximations for square roots for selected ar-
guments, number of iterations of the loop in the algorithm fixSQR, and accuracy of the
square root approximation: if ε and s are values of the variables Eps and Stp then the array
size is supT

s , number of iterations may be any n ≥
(
1 + dlog2

s
εe
)
, and accuracy |X −

√
Y | is

less than
(
s

2n + n× δT
)
.

Acknowledgement: Authors would like to thanks Dmitry Nadezhin for discussions, com-
ments, suggestions, and consultations on the case study presented in this paper and in the
preprint [3].
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Abstract. This paper is devoted to propose an approach to building a reliable soft-
ware with using specification based analysis, based on the well-known approach from
industrial software developing, BDD (Behaviour-Driven Development), and ontology
approach to try modeling requirements for developing software system with further
verification tasks.

1 Motivation

Nowadays software production process is moving from an art which was firstly available
among a small number of well-qualified software engineers to a normal production process
in the teams of software developers with involved members of different skill and abilities,
and there the problem of trustworthy code is becoming the major.

It is known that proof of program correctness - is an undecidable problem, so we con-
stantly need methods to decrease the count of errors in production. And to improve the
quality of software production, ordinary developers should follow an approved process of
program creation, which should take in account possible methods of software creation, types
of possible errors, typical requirements, methods of testing and verification of a complete
code, etc. This process could be created and approved by the software community (from
whom it is possible to get actual software production techniques) in cooperation with some
academic institutions (from whom it is possible to get methods to model and prove properties
of a program).

To study methods of avoiding the errors we definitely should know what is the error? In
this paper, the error will be treated as an inconvenience to a given specification (it could
come from a customer for a given software or from community experience in the field related
to a produced software).

Furthermore here it exists one big issue in a modern software world - where to get a
specification for software developing? Modern software creation processes (for example, the
Scrum process) based on tasks which should be done in short iterations to produce the code
which needs to be in production as soon as possible. That tasks could be decomposed by
the business-analyst or project manager, and, in theory, they should be coming from the
specification (from the document like the scope of work) but in the real life that documents
are designed in the simplified form and don’t cover the actual system is being developed.

The idea in current research in progress here is to develop a software based on specifica-
tion (possible at the same time), then extract requirements from this specification and check
the correctness of software with respect to the specification. To solve the issue with spec-
ification absence it is possible to use latest software engineering achievements. The BDD
(Behaviour-Driven Developing) is an approach to make a software from scratch together



with the specification writing and based on it (specified behaviour is driving us to write a
code). It will be discussed further and it should be stressed here that the special language
for behaviour specifications writing has already been developed and it is successfully being
used in a large number of software companies. And the main advantage here that is the
customer could be involved in the process and he can write those specifications by himself.
So, we could use it and integrate into the process of robust software creation, because now
the customer can see the possible errors as problems in specified behaviour.

With using it we could abandon the unnecessary and superfluous trying to create yet
another language and tool-set which will never be used in the software companies and by
customers who are trying to make a scope of work.

The results were obtained within the RFBR grant (project No. 17-07-01600).

2 Related Work

This work is based on Gherkin [1] - a BDD specification language. The language describes
software system as a set of features and a set of behaviour scenarios inside each feature. The
following example specifies a test for simple division method:

Feature: Software Calculator
I want to create my software calculator
Scenario:
Given I have my software calculator

When I have entered 10 as first operand
And I have entered 2 as second operand
And I press ’Div’

Then The result should be 5

Here Feature, Scenario, Given, When, And, Then - keywords; 10, 2 - parameters, ’Div’ - the
name of a logical function in the future code, and the rest - just ordinary English words.
Later, based on this specification with the existing tools the test code is being generated by
the following rules: a code with ’Given’ annotation should instantiate the object devoted to
this feature, a code with ’And’ (or possible, ’But’) should pass the values from specification
to the object, execute actions and a code with ’Then’ should check to match the expected
value to the result

public class MyStepdefs {
@Given("^I have my software calculator\$")
public void iHaveMySoftwareCalculator()
{
//code to create an instance of class Calculator
}
@When("^I have entered (\\d+) as first operand\$")
public void iHaveEnteredAsFirstOperand(int arg) {
//code to pass the arg to a Calculator object
}
@And("^I have entered (\\d+) as second operand\$")
public void iHaveEnteredAsSecondOperand(int arg)
{
//code to pass the arg to a Calculator object
}
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@And("^I press ’Add’\$")
public void iPressAdd()
{
//code to execute Add method
}
@Then("^The result should be (\\d+)\$")
public void theResultShouldBe(int arg)
{
//code to check return value with the assert statement
}

}

So the process starts from the specification, gets the urging ’step definition’ code, and then
the user is going to implement the actual system code and checking for correct assertions.
The ’step definition code’ is becoming a unit test for a given feature and started to execute
in the order from top to bottom. Hence, here we got a ’runnable’ specification, clear code,
connection between the code and the specification, unit-testing with assertions. And of
course, it improves the quality of developed software system.

To make correct assertions, it could be faced to a problem of correct requirements.
Where to get them? In what form? In the work [2] we proposed a web-portal to software
modeling with using requirements engineering approach. The portal could be a place to
meet a customer, a business analyst and an engineer (Fig. 1). So, such portal may help to

Fig. 1. Structure of the MDD portal for requirements engineering [2]

elaborate the requirements and think about program logic behaviour that could possible
implemented as a runnable specification.

If we need to extract the system requirements from the existing specifications we could
follow a lexical parsing approach. But because of lack of accepted format of specification/s-
cope of work in the software engineering community, we could face semantic issues while
resolving ambiguities. One possible way is trying to extract it by creating an ontology of

94



possible classes of requirements parts and their relationships and then create algorithms to
populate this ontology with classified data [3]. In the work [4] an ontology for various types
of requirements based on templates on LTL and CTL propositional logics has been proposed.
This ontology is shown in Fig. 2.

Fig. 2. The ontology for system requirements [4]

In the paper [5], a SCADA system for water treatment has been described. The developing
process of the system was based on a real scope of work given by a customer. The fragment
of it is as follows:

Step 2: Filling the distiller
The level sensor in the distiller is monitored for
(time of opening the valve) after opening valve N...
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Yes / parameters OK:
1) Valve ... is closed;
2) Transition to step 3.
No / the parameters are not normal:
1) Message (Filling of filling of the distiller);
2) The automatic mode is switched off.

So we see here a specification in the form of transitions of a timed automaton based on
control variables.

The goal of current research is to combine the last discussing approaches and propose a
strong process to build a reliable software with it.

3 Proposed Approach: a Process and a BDD Extension

The proposed process is shown in Fig. 3.

Fig. 3. Possible use of the online portal for modeling, ontology for the requirements and a BDD
process together

Thus, the customer can write a specification of the system in the text form of BDD
language (with extensions), or he can do it implicitly by modeling the system behaviour
in the diagram form with the specialized modeling portal. As a result, we will get a BDD
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specification and with using plugins in the IDEs we can start to write code of the system
and the test code simultaneously. The customer (with help of requirements engineers) can
specify the requirements for the system explicitly in or in the text form. The text form could
be processed according to the developed ontology by classified the parts and make relations
with them, so as a result, propositional formulas will be built. And if the system is modeled
(by generating the model code from the diagrams) and the requirements are clear in the form
of propositional logic (LTL/CTL), they can be verified with existing verifier (i.e. Spin).

What about the BDD specification, is the Gherkin language enough to specify controlling
systems, like in the example? No. And we should make an extension to the BDD language
and tools (based on an IDE plugin) to allow specify the behaviour in the form of an extended
automaton:

Feature: <name of the feature, i.e. name of the mode>
Feature invariant: The ... should be ...
Step: <name of the state>

Given ...
When ...
And ...
And ...

Then the system make transition to Step X.

4 Conclusion and Future Work

In this parer, the ideas of using the BDD process which is well known in software world,
to build the trustworthy software systems are given. It combines the specification writing
process, code writing, testing and verification together. Also, it is given the place of ontology
for requirements in the process. Currently, the demo plugin for BDD language is being
implemented on the bases of Intellij IDEA BDD plugin sources.

References

1. I. Dees, M. Wynne, and A. Hellesoy. Cucumber Recipes: Automate Anything with BDD Tools
and Techniques. Pragmatic Bookshelf, 2013. – ISBN 978-1-93778-501-7

2. D. Lozhkina and S. Staroletov. An Online Tool for Requirements Engineering, Modeling and
Verification of Distributed Software Based on MDD Approach. Preliminary Proceedings of
the 11th Spring/Summer Young Researchersâ Colloquium on Software Engineering (SYR-
CoSE 2017), June 5-7, 2017 â Innopolis, Republic of Tatarstan, Russian Federation. pp. 23-29.
http://syrcose.ispras.ru/2017/SYRCoSE2017_Proceedings.pdf

3. N. O. Garanina and E. A. Sidorova. Ontology population as algebraic information system
processing based on multi-agent natural language text analysis algorithms. Programming and
Computer Software, 41(3):140â148, 2015.

4. N. Garanina, V Zyubin, T. Liakh. Ontological approach to organizing spec- ifica-
tion patterns in the framework of support system for formal verification of distributed
program systems. System Informatics, 9:111-132, 2017. In Russian. http://www.system-
informatics.ru/files/article/garaninazubinliach_0.pdf

5. S. Staroletov. Design and implementation a software for water purification with using
automata approach and specification based analysis. System Informatics, 10:33-34, 2017.
http://www.system-informatics.ru/files/article/staroletov.pdf

97



Научное издание

9th Workshop PSSV

Материалы конференции

9-ый семинар «Семантика, спецификация и верификация программ:
теория и приложения», посвященный памяти

Б. А. Трахтенброта, М. И. Дехтяря и М. К. Валиева
(Ярославль, Россия, 21-22 июня 2018)

Редакторы:
Шилов Николай Вячеславович, Захаров Владимир Анатольевич

Ярославль, ЯрГУ, 2018

На английском языке

Компьютерная верстка Н. В. Шилов, В. А. Захаров, Е. В. Кузьмин

Scientific edition

9th Workshop PSSV

Proceedings

9th Workshop “Program Semantics, Specification and Verification:
Theory and Applications” dedicated to the memory

of B.A. Trakhtenbrot, M. I. Dekhtyar, and M.K. Valiev
(Yaroslavl, Russia, June 21-22, 2018)

Editors:
Nikolay Shilov, Vladimir Zakharov

Signed to prin 41t 60. .2018. Form 61/001x07 at .
Print run 30 copies. Orde 810/540 r .

Printed by Yaroslavl State University,
14, Sovetskaya str., 150003, Yaroslavl


	In memory of Boris Trakhtenbrot,  Mars Valiev and Michael Dekhtyar 
	Mikhail Iosifovich Dekhtyar(1946–2018)
	Michael I. Dekhtyar's Contributions to the Theory of Interval Probabilistic Programs
	Taylor expansion of proofs and static analysis of time complexity  (abstract of invited talk)
	Russell logical framework: proof language, usability and tools  (abstract of invited talk)
	Software testing: Finite State Machine based test derivation strategies  (abstract of invited talk)
	Making Verification in KeYmeara Easier  – A Graphical Approach for Better Usability
	On the expressive power of some extensions of Linear Temporal Logic
	Polyprograms and polyprogram bisimulation
	On Safety of Unary and Non-Unary Inflationary Fixed Point Operators
	Towards Loop Invariant Elimination for Definite Iterations over Changeable Data Structures in C Programs Verification
	 Verification Oriented Process Ontology 
	A new method of verification of security protocols
	Translation from Event-B into Eiffel
	A summary of a case-study on platform-independent verification of the square root function in fix-point machine arithmetic
	Building a process of trustworthy software developing based on BDD and ontology approaches with further formal verification

